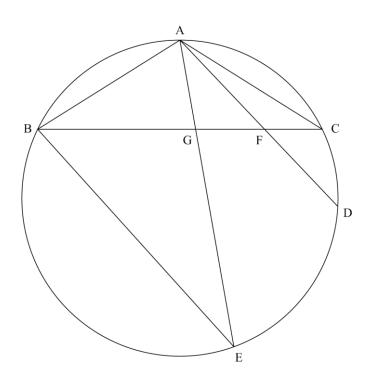
4. 相似の証明と長さ・求積などの複合問題 【2019 年度出題】

【問1】

次の図のように、同じ円周上に 3 点 A, B, C があり、 $\angle BAC$ は鈍角、AB=AC となっています。A を含まない \widehat{BC} 上に AD // BE となるように B, C と異なる点 D, E をとります。また、線分 BC と 2 つの線分 AD, AE との交点をそれぞれ F, G とします。

このとき、 $\triangle ABF \circ \triangle GEB$ であることを証明しなさい。

(岩手県 2019 年度)



〔証明〕

 \triangle ABF と \triangle GEB において

△ABC は二等辺三角形であるから

 $\angle ABC = \angle ACB$

ABに対する円周角は等しいから

∠AEB=∠ACB

したがって

 $\angle ABF = \angle GEB \cdots \bigcirc$

AD // BE より、平行線の錯角は等しいから

 $\angle AFB = \angle GBE \cdots ②$

①, ②より, 2組の角がそれぞれ等しいから

 $\triangle ABF \circ \triangle GEB$

解説

二等辺三角形の底角は等しいこと

同じ弧に対する円周角は等しいこと

平行線の錯角は等しいこと

などを利用して

2組の角がそれぞれ等しいことを示す。

【問2】

図1のように、点 O を中心とする円の周上に、3 点 A、B、C があり、 $\widehat{AB} = \widehat{BC}$ である。また、 $\angle ABC$ の大きさは 90° より大きいものとする。点 C を通り線分 AB に平行な直線と円 O との交点のうち点 C とは異なる点を D とし、線分 CD について点 A と反対側の円周上に点 E をとる。線分 CD と線分 AE、BE との交点をそれぞれ F、G とし、線分 AE と線分 BD との交点を H とする。このとき、次の問いに答えなさい。

(山形県 2019 年度)

問1 \angle FDH=40°, \angle CFE=55°であるとき、 \angle BHEの大きさを求めなさい。

間2 $\triangle AHB \circ \triangle FGE$ であることを証明しなさい。

問3 図2は、図1で、点Gが点Oと同じ位置となるように、4点A、B、C、Eをとったときのものである。円Oの半径が4cmであるとき、四角形BHFGの面積を求めなさい。

図 1

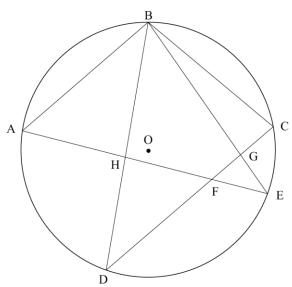
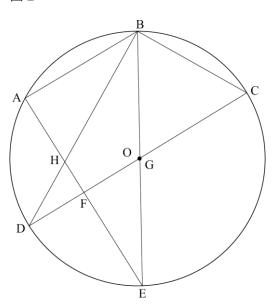


図 2



問 1		
問 2	〔証明〕	
問3	$ m cm^2$	

問 195°

問2

〔証明〕

 \triangle AHB と \triangle FGE において

AB // DC で、同位角は等しいから

 $\angle BAH = \angle EFG \cdots \bigcirc$

1つの円で、等しい弧に対する円周角は等しいから

 $\angle FEG = \angle BDC \cdots ②$

AB // DC で、錯角は等しいから

 $\angle ABH = \angle BDC \cdots (3)$

②, ③より

 $\angle ABH = \angle FEG \cdots \textcircled{4}$

①, ④より, 2組の角がそれぞれ等しいので

 $\triangle AHB \circ \triangle FGE$

問3
$$\frac{10\sqrt{3}}{3}$$
 cm²

解説

問 1

対頂角は等しいから、 $\angle DFH = \angle CFE = 55^{\circ}$ $\triangle DFH$ で三角形の内角・外角の性質より、 $\angle BHE = \angle FDH + \angle DFH = 40^{\circ} + 55^{\circ} = 95^{\circ}$

問2

 \triangle AHB & \triangle FGE において AB $\|$ DC で、同位角は等しいから \angle BAH= \angle EFG…①

1つの円で、等しい弧に対する円周角は等しいから、

 $\angle FEG = \angle BDC \cdots ②$

AB // DC で、錯角は等しいから // ABH = // BDC…③

②, ③ \sharp ϑ , $\angle ABH = \angle FEG \cdots ④$

①, ④より、2組の角がそれぞれ等しいので \triangle AHB \hookrightarrow \triangle FGE

問3

AB // DC で、錯角は等しいから、∠ABD=∠BDC

よって、円周角が等しいから、 $\widehat{AD} = \widehat{BC}$

仮定より、 $\widehat{AB} = \widehat{BC}$ だから、 $\widehat{AB} = \widehat{BC} = \widehat{AD}$ がいえるので、2 点 A、B は半円の弧を 3 等分する点である。

したがって、 $\angle BGD = 180^{\circ} \times \frac{2}{3} = 120^{\circ}$

 \triangle BDG は GB=GD の二等辺三角形だから、 \angle BGD の二等分線 と辺 BD との交点を I とすると、BI=DI、BD \bot GI であり、 \triangle DGI は 30°、60°、90°の直角三角形である。

よって、 $\mathrm{GI} = \mathrm{GD} \times \frac{1}{2} = 2 \mathrm{(cm)}$ 、 $\mathrm{DI} = \mathrm{GI} \times \sqrt{3} = 2 \sqrt{3} \mathrm{(cm)}$ だから、

 $\triangle DGI = \frac{1}{2} \times 2\sqrt{3} \times 2 = 2\sqrt{3}(cm^2), \quad \triangle BDG = 2\triangle DGI = 4\sqrt{3}(cm^2)$

また、 $\angle BGC=180^{\circ}-120^{\circ}=60^{\circ}$ 、GB=GC より、 $\triangle BGC$ は

正三角形だから、BC=GB=4cm

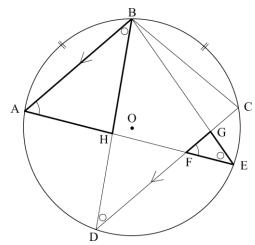
等しい弧に対する弦は等しいので、AB=BC=4cm

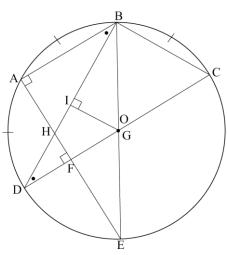
ここで、AB # DC、EG: EB=1:2より、 $FG=\frac{1}{2}AB=2$ (cm)だ

から、DF=4-2=2(cm)

 $\triangle DGI$ $\triangle DHF$ であり,DI:DF= $2\sqrt{3}:2=\sqrt{3}:1$ だから, $\triangle DGI:\triangle DHF=(\sqrt{3})^2:1^2=3:1$ $\triangle DHF=\triangle DGI \times \frac{1}{3}=\frac{2\sqrt{3}}{3}(cm^2)$

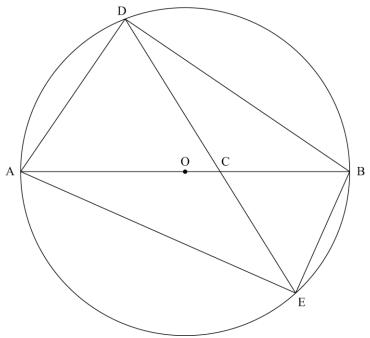
したがって、四角形 BHFG= \triangle BDG- \triangle DHF= $4\sqrt{3}-\frac{2\sqrt{3}}{3}=\frac{10\sqrt{3}}{3}$ (cm²)





【問3】

下の図のように、半径 5 cm の円 O があり、線分 AB は円 O の直径である。線分 AB 上で AC:CB=3:2 となる点を C とする。円 O の周上に 2 点 A, B と異なる点 D をとり、円 O と直線 CD との交点のうち、点 D と異なる点を E とする。



このとき、次の問1、問2に答えなさい。

(茨城県 2019 年度)

- 問1 $\triangle ACD \circ \triangle ECB$ であることを証明しなさい。
- 問2 AB LDEのとき、線分ADの長さを求めなさい。

問 1		
問2	cm	

問 1

 $\triangle ACD \ \& \triangle ECB \ \circlearrowleft$

対頂角だから

 $\angle ACD = \angle ECB \cdots \bigcirc$

AEに対する円周角だから

 $\angle ADC = \angle EBC \cdots ②$

①, ②から

2組の角がそれぞれ等しいので

 $\triangle ACD \circ \triangle ECB$

問 $2\sqrt{15}$ (cm)

解説

問 1

線分の長さについての情報が少ないので、三角形の相似条件のうち、「2組の角がそれぞれ等しい2つの三角形は相似」を利用することを考える。

△ACD と△ECB において、対頂角は等しいから∠ACD=∠ECB······①

AEに対する円周角は等しいから∠ADC=∠EBC·····②

①,②より,2組の角がそれぞれ等しいから $\triangle ACD \circ \triangle ECB$

なお、2の代わりに「 \overrightarrow{DB} に対する円周角は等しいから $\angle DAC = \angle BEC$ 」を示してもよい。

問2

AB=10cm であることと AC: CB=3:2より, AC=6cm, CB=4cm

半円の弧に対する円周角は直角だから $\angle ADB = 90^{\circ}$ $\triangle ABD$ において、三平方の定理より

 $AD^2+BD^2=100\cdots$ ① また、 $AB\perp DE$ のとき、 $\triangle ACD$ 、 $\triangle BDC$ は直角三角形となるから、 $\triangle ACD$ と $\triangle BDC$ において、それぞれ三平方の定理より

 $AD^2-AC^2=CD^2$ $AD^2-36=CD^2\cdots\cdots (2)$, $BD^2-BC^2=CD^2$ $BD^2-16=CD^2\cdots\cdots (3)$

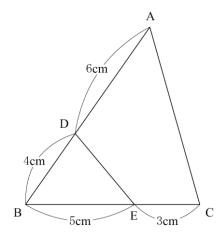
②, ③ \sharp ϑ , AD²-36=BD²-16 AD²-BD²=20······④

①+④より、 $2AD^2=120$ $AD^2=60$ AD>0 だから $AD=2\sqrt{15}$ (cm)

【問4】

右の図のように、 $\triangle ABC$ の辺 AB 上に点 D、辺 BC 上に点 E をとる。このとき、 $\triangle ABC$ $\triangle \triangle EBD$ であることを証明しなさい。

(栃木県 2019 年度)



解答欄

〔証明〕		

解答

〔証明〕

 \triangle ABC $\geq \triangle$ EBD において

 $AB : EB = 10 : 5 = 2 : 1 \cdots ①$

BC:BD=8:4=2:1···②

①, ②より

 $AB : EB = BC : BD \cdots 3$

共通な角であるから

 $\angle ABC = \angle EBD \cdots \textcircled{4}$

③, ④より

2組の辺の比とその間の角がそれぞれ等しいから

 $\triangle ABC \circ \triangle EBD$

解説

 \triangle ABC と \triangle EBD において、AB: EB=10: 5=2:1……①、BC: BD=8: 4=2:1……②

①, ②より, AB: EB=BC: BD······③

共通な角だから∠ABC=∠EBD······④

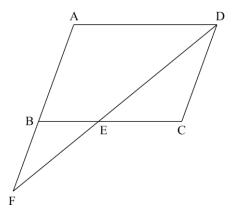
③、④より、2組の辺の比とその間の角がそれぞれ等しいから \triangle ABC \hookrightarrow \triangle EBD

【問5】

右の図の平行四辺形 ABCD において、AB=5 cm、AD=7 cm であり、辺 BC 上の点 E は、BE=3 cm となる点である。直線 AB と直線 DE との交点を F とする。次の間 1 ~間 3 に答えなさい。

(群馬県 2019 年度 前期)

問1 三角形 BFE と三角形 CDE が相似であることを証明しなさい。



問2 三角形 BFE の面積 S と三角形 CDE の面積 S'の比 S: S'を、最も簡単な整数比で表しなさい。

問3 三角形 BFE の面積 S と平行四辺形 ABCD の面積 T の比 S: T を,最も簡単な整数比で表しなさい。

	〔証明〕				
問 1					
問 2	S : S' =	:			
問3	S : T=	:			

問 1

〔証明〕

△BFE ≥△CDE において

AF // DC より, 平行線の錯角は等しいから

 $\angle BFE = \angle CDE \cdots \bigcirc$

対頂角は等しいから

 $\angle BEF = \angle CED \cdots \bigcirc \bigcirc$

②より

2組の角がそれぞれ等しいので

 $\triangle BFE \circ \triangle CDE$

問 2 (S: S'=)9(:)16 問 3 (S: T=)9(:)56

解説

問 1

 \triangle BFE と \triangle CDE において、四角形 ABCD は平行四辺形だから、向かい合う辺は平行なので、AF // DC 平行線の錯角は等しいから、 \angle BFE= \angle CDE…①

対頂角は等しいから、 $\angle BEF = \angle CED \cdots$ ② ①、②より、2組の角がそれぞれ等しいので、

 \triangle BFE \hookrightarrow \triangle CDE ①や②の代わりに \angle FBE= \angle DCE を用いてもよい。

問2

平行四辺形の向かい合う辺の長さは等しいので、BC=AD=7 cm だから、CE=7-3=4(cm) 間 1 より \triangle BFE \diamondsuit \triangle CDE で、相似比はBE:CE=3:4 よって、S:S'=32:42=9:16 間 3

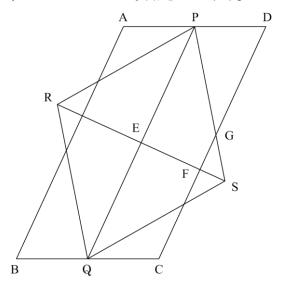
問**2**より、 $S' = \frac{16}{9}S$ $\triangle DEC$ と $\triangle DBC$ は底辺をそれぞれ CE、BC とみると高さが等しいので、

 $\triangle DEC : \triangle DBC = CE : BC = 4 : 7$ $\sharp \supset \tau$, $\triangle DBC = S' \times \frac{7}{4} = \frac{16}{9}S \times \frac{7}{4} = \frac{28}{9}S$

平行四辺形は対角線で2つの合同な三角形に分けられるので、平行四辺形ABCDの面積Tは

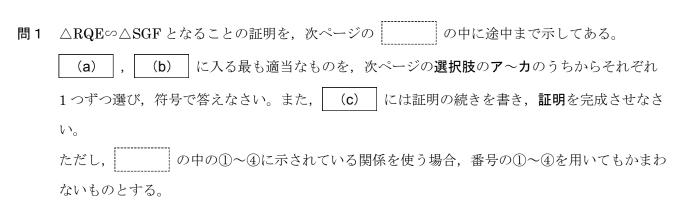
 $T = \triangle DBC \times 2 = \frac{28}{9}S \times 2 = \frac{56}{9}S$ したがって、 $S: T = S: \frac{56}{9}S = 9:56$

【問6】



このとき、次の問1、問2に答えなさい。

(千葉県 2019 年度 前期)



四角形 PQCD において,

四角形 ABCD は平行四辺形であるから、

 $AD = BC \cdots \bigcirc$

AD // BC…②

点 P, Q は, それぞれ辺 AD, BC の中点であるから, ①より,

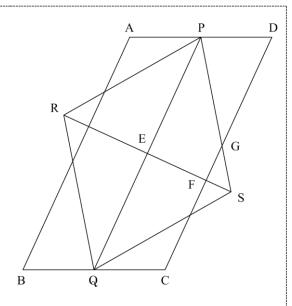
②, ③より,

四角形 PQCD は平行四辺形となる。

したがって,

PQ // DC …④

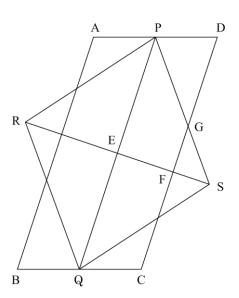
(c)



選択肢

- ア PG イ QC ウ ES
- エ 2組の向かいあう辺が、それぞれ平行である
- オ 2組の向かいあう辺が、それぞれ等しい
- **カ** 1組の向かいあう辺が、等しくて平行である

問2 RQ=5 cm, AD=4 cm, PG=DG=3 cm のとき, 線分 FS の長さを求めなさい。



	(a)		
	(b)		
問 1	(c)		
問 2		cm	

```
解答
```

問 1

(a)1

(b)カ

(c)

 \triangle RQE \triangle SGF \triangle Short

④より、同位角は等しいので

 $\angle REQ = \angle EFC \cdots \textcircled{5}$

対頂角は等しいので

 $\angle EFC = \angle SFG \cdots 6$

⑤より

 $\angle REQ = \angle SFG \cdots ?$

また、四角形 PRQS はひし形だから

平行四辺形である。

したがって, PS // RQ…⑧

⑧より, 錯角は等しいので

 $\angle QRE = \angle GSF \cdots 9$

⑦より

2組の角がそれぞれ等しいので

 $\triangle RQE \circ \triangle SGF$

問
$$2\frac{8\sqrt{2}}{9}$$
 (cm)

解説

問 1

証明の④より、PQ // DC, ひし形は平行四辺形の特別な形であることから、PS // RQ がいえるので、平行線の同位角が等しいこと、平行線の錯角が等しいことを利用して、2 組の角がそれぞれ等しいことをいえばよい。

模範解答で示した \angle REQ= \angle SFG…⑦、 \angle QRE= \angle GSF…⑨以外に、次のように \angle RQE= \angle SGF を示してもよい。PS // RQ より、平行線の錯角は等しいから \angle RQE= \angle SPE…(1) PQ // DC より、平行線の同位角は等しいから \angle SPE= \angle SGF…(2) (1)、(2)より、 \angle RQE= \angle SGF

問2

点 P は辺 AD の中点だから、PD=AD÷2=4÷2=2(cm) 点 P から線分 DG に引いた垂線と線分 DG との交点を H とし、DH=xcm、PH=hcm とすると、PD=2 cm だから、 \triangle PHD で三平方の定理より、 $x^2+h^2=2^2$ $x^2+h^2=4\cdots$ (1) PG=DG=3cm、GH=(3-x)cm だから、 \triangle PHG で三平方の定理より、

$$(3-x)^2+h^2=3^2$$
 $x^2-6x+h^2=0\cdots(2)$ $(1)-(2) \downarrow 0$, $6x=4$ $x=\frac{2}{3}$

(1)に
$$x = \frac{2}{3}$$
を代入して、 $h^2 = \frac{32}{9}$ $h = \frac{4\sqrt{2}}{3}$

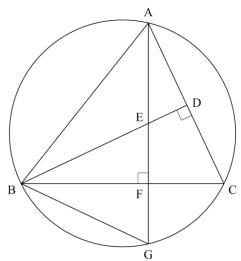
ここで、ひし形の対角線は垂直に交わるから \angle PES=90°で、**問1**の証明の④より PQ // DC だから平行線の同位角は等しく \angle SFG=90° したがって、 \angle PHG= \angle SFG \angle PGH= \angle SGF だから、2 組の角がそれぞれ等しいので、 \triangle PGH \hookrightarrow \triangle SGF ひし形の性質より

PS=RQ=5 cm だから、SG=5-3=2(cm) よって、FS: HP=2:3 FS: $\frac{4\sqrt{2}}{3}$ =2:3

$$FS = \frac{8\sqrt{2}}{9} (cm)$$

【問7】

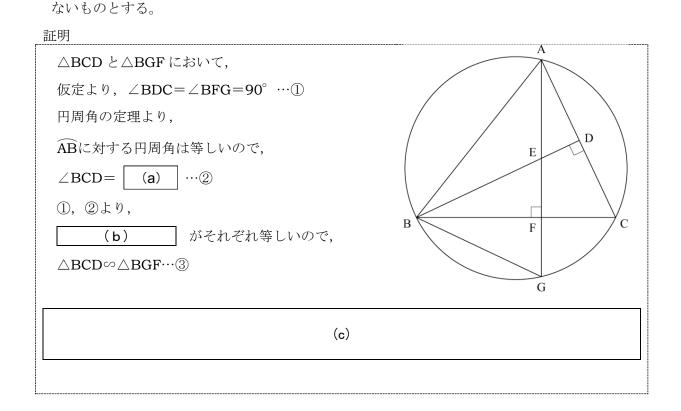
下の図のように、3つの頂点 A、B、C が、1つの円周上にある鋭角三角形 ABC がある。点 B から辺 AC に垂線 BD をひく。また、点 A から辺 BC に垂線をひき、線分 BD との交点を E、辺 BC との交点を F、円との交点を G とする。さらに、点 B と点 G を結ぶ。



このとき、次の問1、問2に答えなさい。

(千葉県 2019 年度 後期)

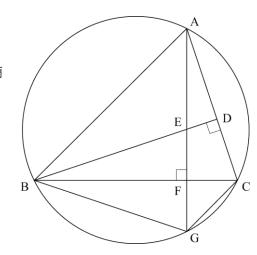
問 1	FE=FG となることの証明を、次ページの の中に途中まで示してある。
	(a) , (b) に入る最も適当なものを、次ページの 選択肢 の \mathbf{r} ~ \mathbf{h} のうちからそれぞれ
	1つずつ選び,符号で答えなさい。また, (c) には証明の続きを書き, 証明 を完成させなさ
	V _o
	ただし, の中の①~③に示されている関係を使う場合,番号の①~③を用いてもかまわ



選択肢

問2 AE: EF=2:1, AF=BFとする。また, 点 C と点 G を結ぶ。

このとき、 \triangle AED と四角形 ABGC の面積の比を、最も簡単な整数の比で表しなさい。



	(a)	
	(b)	
問 1	(c)	
問2		

問 1

(a)ア

(b) I

(c)

 \triangle BFE \triangle \triangle BFG \triangle \triangle

③より

 $\angle FBE = \angle FBG \cdots 4$

仮定より

 $\angle BFE = \angle BFG = 90^{\circ} \cdots (5)$

BF は共通…⑥

④, ⑤, ⑥より

1組の辺とその両端の角がそれぞれ等しいので

 $\triangle BFE \equiv \triangle BFG$

したがって

FE = FG

問23:40

解説

問 1

 \triangle BCD と \triangle BGF において

仮定より、 ∠BDC=∠BFG=90° …①

円周角の定理より、ABに対する円周角は等しいので

 $\angle BCA = \angle BGA \quad \angle BCD = \angle BGF \cdots ②$

①,②より,2組の角がそれぞれ等しいので

 $\triangle BCD \circ \triangle BGF \cdots (3)$

 \triangle BFE ≥ \triangle BFG において

③より、相似な図形の対応する角は等しいので

 $\angle FBE = \angle FBG \cdots 4$

仮定より、 ∠BFE=∠BFG=90° …⑤

BF は共通…⑥ ④、⑤、⑥より、1 組の辺とその両端の角がそれぞれ等しいので、 \triangle BFE \equiv \triangle BFG 合同な図形の対応する辺は等しいので、FE=FG

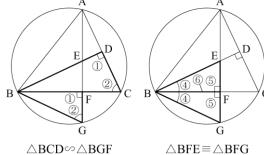
EF = acm(a > 0)とすると、AE: EF = 2: 1より、AF=3acm 仮定より、BF=AF=3acm また、 $\mathbf{B1}$ より、 $\mathbf{FG}=\mathbf{FE}=a\mathbf{cm}$ $\triangle \mathbf{ABF}$ は $\mathbf{AF}=\mathbf{BF}$ 、 $\angle \mathbf{AFB}=\mathbf{90}^{\circ}$ の直角二等辺三角形だから、 円周角の定理より、BGに対する円周角は等しいので、 ∠GCF= ∠BAF=45° よって、△CFG は∠CFG=90°、∠GCF=∠CGF=45°の直角二等辺三角形だから、FC=FG=acm

したがって、四角形 ABGC の面積は、 $\frac{1}{2}$ ×AG×BC= $\frac{1}{2}$ ×(3a+a)×(3a+a)=8a²(cm²)

ここで、△ACF と△AED において、仮定より、∠AFC=∠ADE=90° ···①、∠FAC=∠DAE···② ①、②より、2 組の角がそれぞれ等しいので、 $\triangle ACF \hookrightarrow \triangle AED$ 三平方の定理より、 $AC^2 = (3a)^2 + a^2 = 10a^2$ AC>0 だから、AC= $\sqrt{10}a$ (cm) \triangle ACF: \triangle AED=AC²: AE²=10a²: 4a²=5: 2

 $\triangle ACF = \frac{1}{2} \times a \times 3a = \frac{3}{2}a^{2}(cm^{2}), \quad \triangle AED = \triangle ACF \times \frac{2}{5} = \frac{3}{2}a^{2} \times \frac{2}{5} = \frac{3}{5}a^{2}(cm^{2})$

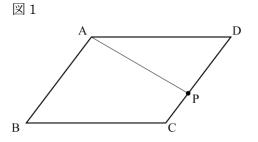
よって、 $\triangle AED$: 四角形 $ABGC = \frac{3}{5}a^2 : 8a^2 = 3 : 40$



【問8】

右の図1で、四角形 ABCDは、平行四辺形である。点Pは、 辺 CD 上にある点で、頂点 C、頂点 D のいずれにも一致しない。 頂点Aと点Pを結ぶ。

次の各問に答えよ。



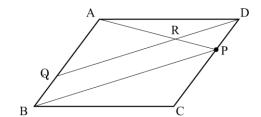
(東京都 2019 年度) B

図1において、 $\angle ABC=50^{\circ}$ 、 $\angle DAP$ の大きさを a° とするとき、 $\angle APC$ の大きさを表す式を、 問 1 次のア〜エのうちから選び, 記号で答えよ。

ア (a+130)度 イ (a+50)度 ウ (130-a)度 エ (50-a)度

図 2

- 問2 右の図2は、図1において、頂点Bと点Pを結び、頂点 Dを通り線分BPに平行な直線を引き、辺ABとの交点 をQ、線分APとの交点をRとした場合を表している。 次の(1), (2)に答えよ。
 - (1) $\triangle ABP \circ \triangle PDR$ であることを証明せよ。



(2) 次の の中の「き」「く」「け」「こ」に当てはまる数字をそれぞれ答えよ。 図2において、頂点 C と点 R を結び、線分 BP と線分 CR の交点を S とした場合を考える。

CP: PD=2:1のとき,四角形 QBSRの面積は、△AQRの面積の

問 1				
問 2	(1)		と△PDRにおいて、 BP∽△PDR	
	(0)	* <		
	(2)	(†		
		ے ا		

```
解答
問1イ
問 2
(1)
 〔証明〕
\triangleABP \trianglePDR において
四角形 ABCD は平行四辺形だから
AB // DC
平行線の錯角は等しいから
\angle PAB = \angle RPD \cdots (1)
仮定から, BP // QD
平行線の錯角は等しいから
\angle APB = \angle PRD \cdots (2)
(1), (2)より
2組の角がそれぞれ等しいから
\triangle ABP \circ \triangle PDR
(2)
き 1
〈 3
け1
こ 2
解説
問 1
平行四辺形の向かいあう角は等しいから ZADP= ZABC=50°
三角形の1つの外角は、そのとなりにない2つの内角の和に等しいから
\angle APC = \angle DAP + \angle ADP = a + 50(度)
問 2
(1)
△ABP と△PDR において、平行四辺形 ABCD の向かいあう辺は平行だから AB//DC
平行線の錯角は等しいから ZPAB= ZRPD……①
仮定より BP//QD
平行線の錯角は等しいから ZAPB= ZPRD……②
①,②より、2組の角がそれぞれ等しいから\triangle ABP \sim \triangle PDR
(2)
平行四辺形 BPDO の向かいあう辺は等しいから PD=BO したがって、CP=AO
仮定より CP: PD=2:1 だから AQ: QB=2:1
\triangle AQR \circ \triangle ABP \downarrow \emptyset, \triangle AQR : \triangle ABP = 2^2 : 3^2 = 4 : 9
よって、△AQR: (四角形 QBPR の面積)=4:5······③
\triangle AQR の面積を S とおくと、③より(四角形 QBPR の面積)=\frac{5}{4}S
\triangle CPS\circ\triangle CDR より、PS: DR=CP: CD=2: 3 だから\triangle PRS: \triangle PDR=2: 3\cdots
\triangle PDR \hookrightarrow \triangle AQR より\triangle PDR : \triangle AQR = 1^2 : 2^2 = 1 : 4 だから\triangle PDR = \frac{1}{4}S
\textcircled{4} \ \ \ \ \ \triangle PRS = \frac{2}{3} \triangle PDR = \frac{1}{6}S
したがって、(四角形 QBSR の面積)=(四角形 QBPR の面積)-\trianglePRS=\frac{5}{4}S-\frac{1}{6}S=\frac{13}{12}S だから、
```

四角形 QBSR の面積は \triangle AQR の面積の $\frac{13}{12}$ 倍である。

【問9】

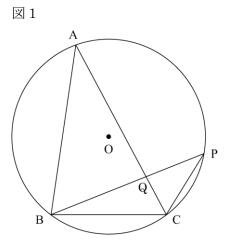
右の**図1**のように、円**0**の周上に**3**点**A**, **B**, **C**を, 三角形 **ABC** の辺が長い方から順に**AC**, **AB**, **BC** となるようにとる。

また、点Bを含まない \widehat{AC} 上に2点A、Cとは異なる点Pをとり、線分ACと線分BPとの交点をQとする。

このとき,次の問いに答えなさい。

(神奈川県 2019 年度)

問1 三角形 ABQ と三角形 PCQ が相似であることを次のように 証明した。 (i) , (ii) に最も適するものをあと の1~6の中からそれぞれ1つ選び,その番号を答えなさい。



〔証明〕	
\triangle ABQ と \triangle PCQ において,	
まず, (i)	から,
$\angle BAC = \angle BPC$	
よって、∠BAQ=∠CPQ …①	
次に, (ii)	から,
$\angle AQB = \angle PQC \cdots ②$	
①、②より、 2 組の角がそれぞれ等しいから、	
$\triangle ABQ \circ \triangle PCQ$	

- 1 対頂角は等しい
- 2 ABに対する円周角は等しい
- 3 BCに対する円周角は等しい
- 4 CPに対する円周角は等しい
- 5 PAに対する円周角は等しい
- 6 三角形の外角は、それととなり合わない2つの内角の和に等しい

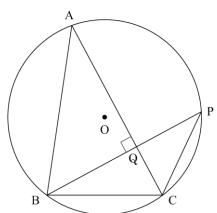
問2	点 P が、点 B を含まない \widehat{AC} 上の 2 点 A 、 C を除いた部分を動くとき、次の 中の
	に適するものを書きなさい。ただし、「AB」を必ず用いること。
	三角形 ABQ と三角形 PCQ は常に相似であり、AB=CP となるとき、三角形 ABQ
	と三角形 PCQ は合同である。

また、三角形 ABQ と三角形 PCQ がともに二等辺三角形となるのは、AB=AQ の

問3 図2のように,点 P を,線分 AC と線分 BP が垂直に交わる 図2 ようにとる。

ときや のときである。

AB=7 cm, AC=8 cm, BC=5 cm のとき,線分 BP の長さを求めなさい。



問 1	(i)	
μη τ	(ii)	
問2		
問3		cm

問 1

(i)3

(ii) 1

問 2 AB // CP

問3
$$\frac{13\sqrt{3}}{3}$$
 cm

解説

問 1

(i)には $\angle BAC = \angle BPC$ となることの根拠が入る。 $\angle BAC$, $\angle BPC$ はどちらも \widehat{BC} に対する円周角だから、あてはまるのは 3

また, (ii)には $\angle AQB = \angle PQC$ となることの根拠が入る。 $\angle AQB$, $\angle PQC$ は対頂角だから, あてはまるのは 1

問2

AB と BQ の関係は常に AB>BQ となるから、 \triangle ABQ が二等辺三角形になるのは、AB=AQ のときと AQ =BQ のとき。また、 \triangle ABQ \circ \triangle PCQ だから、AQ=BQ のとき、 \angle ABQ= \angle BAQ= \angle CPQ が成り立つ。よって、錯角が等しいから、AB // CP

問3

CQ=x cm とすると、AQ=AC-CQ=8-x(cm) 三平方の定理より、

$$\triangle$$
BCQ で、 $BQ^2=BC^2-CQ^2=5^2-x^2\cdots$ ① 同様に \triangle ABQ で、 $BQ^2=AB^2-AQ^2=7^2-(8-x)^2\cdots$ ②

①, ②より,
$$5^2 - x^2 = 7^2 - (8 - x)^2$$
 $25 - x^2 = 49 - (64 - 16x + x^2)$ $16x = 40$ $x = \frac{5}{2}$

よって、①より、BQ²=5²-
$$\left(\frac{5}{2}\right)^2=\frac{75}{4}$$
 BQ>0だから、BQ= $\sqrt{\frac{75}{4}}=\frac{5\sqrt{3}}{2}$ (cm)

また、
$$AQ=8-\frac{5}{2}=\frac{11}{2}(cm)$$
 問1より $\triangle ABQ$ の $\triangle PCQ$ だから、 $AQ:PQ=BQ:CQ$

$$\frac{11}{2}: PQ = \frac{5\sqrt{3}}{2}: \frac{5}{2}$$
 $\sharp \circ \tau, \frac{11}{2}: PQ = \sqrt{3}: 1$ $PQ = \frac{11}{2} \times \frac{1}{\sqrt{3}} = \frac{11\sqrt{3}}{6}$ (cm)

したがって、BP=BQ+PQ=
$$\frac{5\sqrt{3}}{2}+\frac{11\sqrt{3}}{6}=\frac{15\sqrt{3}}{6}+\frac{11\sqrt{3}}{6}=\frac{26\sqrt{3}}{6}=\frac{13\sqrt{3}}{3}$$
(cm)

【問 10】

図1~図3のように、 $\angle ABC=60^\circ$ の平行四辺形 ABCD があり、P は辺 AB 上の点とする。ただし、P が頂点 A、B 上にあるときは考えないものとする。

このとき、次の問1~問3に答えなさい。

(石川県 2019 年度)

- 問1 図1のように、線分 AC と PD の交点を E とする。 \angle ACD=41 $^\circ$, \angle ADP=21 $^\circ$ のとき, \angle CED の大きさを求めなさい。
- 問2 図2のように、点Qを辺BC上にPQ // AC となるようにとる。AB とDQ を延長したときの交点をF とし、AC とDF の交点をG とする。このとき、 $\triangle GCD \sim \triangle QPF$ であることを証明しなさい。
- 問3 図3において、AB=6 cm、AD=4 cm とする。
 CP+PDの長さが最短となるとき、その長さを求めな
 さい。なお、途中の計算も書くこと。

図 1

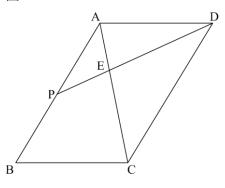


図 2

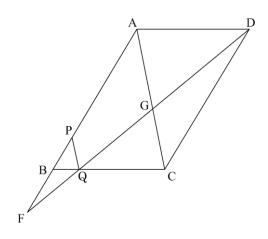
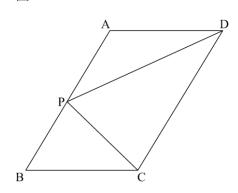


図3



問 1		度	
問 2	〔証明〕		
問3	〔計算〕 答 cm		

```
解答
問 1100 度
問 2
〔証明〕
\triangleGCD \land \land QPF \land \land \land \land
CD // PF より, 錯角は等しいので
\angle GDC = \angle QFP \cdots (1)
対頂角は等しいので ∠DGC=∠FGA…②
PQ // AG より, 同位角は等しいので
\angle FGA=\angle FOP···③
②, ③より, ∠DGC=∠FQP…④
①, ④より, 2組の角がそれぞれ等しいから
\triangle GCD \circ \triangle QPF
問3
〔計算〕
辺ABを軸として、点Cを対称移動した点をHとする。
CP+PD=HP+PDより CP+PD の最短の長さは、HD の長さに等しい。
BC=4, ∠ABC=60° より
CH = 2\sqrt{3} \times 2 = 4\sqrt{3}
∠HCD=90° より
HD = \sqrt{6^2 + (4\sqrt{3})^2} = 2\sqrt{21}
[答] 2\sqrt{21} cm
解説
問 1
よって、\angle CED = 180^{\circ} - 41^{\circ} - 39^{\circ} = 100^{\circ}
問2
△GCD と△OPF において、CD // PF より、平行線の錯角は等しいから∠GDC=∠OFP……①
対頂角は等しいから ZDGC= ZFGA……②
```

PQ // AG より、平行線の同位角は等しいから ZFGA = ZFQP ······ ③

②, ③ \sharp ϑ , \angle DGC= \angle FQP······④

よって、①、④より、2組の角がそれぞれ等しいから \triangle GCD \bigcirc \triangle QPF

問3

辺ABを軸として、点Cを対称移動した点をHとする。CP+PDの長さが最短となるのは、点Hと頂点D を結んだ線分と辺 AB の交点を P としたときである。このとき、△PHC は二等辺三角形となるから HP= CPより、CP+PD=HP+PD=HDである。よって、CP+PDの最短の長さはHDの長さと等しい。点C と点 H を結んだ線分と辺 AB との交点を I とすると、 $\angle ABC = 60^{\circ}$ より、 $\triangle CBI$ は 3 つの角が 30°、 60° , 90° の直角三角形であるから, 辺の比は $BC: BI: CI=2:1:\sqrt{3}$ である。BC=4cm より, $CI=2\sqrt{3}$ cm だから CH=2CI=4√3cm

AB // DC より、 \angle HCD= \angle HIA= 90° だから、三平方の定理より HD= $\sqrt{6^2+(4\sqrt{3})^2}=2\sqrt{21}$ (cm)

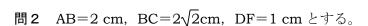
【問 11】

右の図のように、円 O の周上の 4 点 A、B、C、D を頂点とする長方形 ABCD がある。点 B、C を含まない \widehat{AD} 上に、点 A、D と異なる点 E をとり、直線 AE と直線 CD の交点を点 F とする。

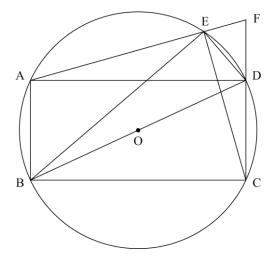
このとき,次の問いに答えよ。

(福井県 2019 年度)

問1 $\triangle ADF \circ \triangle BED$ であることを証明せよ。



- (1) 円 O の半径と DE の長さを求めよ。
- **(2)** △BCE の面積を求めよ。



問 1	. 让助明			
	(1)	円0の半径	(cm)	
問2		DE=	(cm)	
	(2)	∆BCE=	(cm^2)	

```
解答
```

問 1

〔証明〕

DEに対する円周角だから

 $\angle DAF = \angle EBD \cdots (1)$

四角形 ABCD は長方形であり

∠ADF は頂点 D における外角だから

 $\angle ADF = 90^{\circ} \cdots \bigcirc \bigcirc$

BDに対する円周角であり

四角形 ABCD は長方形だから

 $\angle BED = \angle BAD = 90^{\circ} \cdots (3)$

②, ③から, ∠ADF=∠BED…④

①, ④から, 2組の角が, それぞれ等しいので

 $\triangle ADF \circ \triangle BED$

問 2

(1)

円 O の半径 $\sqrt{3}$ (cm)

$$DE = \frac{2}{3}\sqrt{3} \quad (cm)$$

$$(2) \triangle BCE = \frac{8}{3}\sqrt{2} \quad (cm^2)$$

解説

問 1

 $\triangle ADF$ と $\triangle BED$ で, \widehat{DE} に対する円周角だから, $\angle DAF = \angle EBD\cdots$ ① 四角形 ABCD は長方形であり, $\angle ADF$ は頂点 D における外角だから, $\angle ADF = 90^\circ$ …②

BDに対する円周角であり、四角形 ABCD は長方形だから、∠BED=∠BAD=90° …③

②, ③から, ∠ADF=∠BED…④

①, ④から, 2組の角がそれぞれ等しいので, $\triangle ADF \sim \triangle BED$

問2

(1)

 \triangle ABD において三平方の定理より、BD²=2²+(2 $\sqrt{2}$)²=12 BD>0 だから、BD=2 $\sqrt{3}$ (cm) \angle BAD=90° より、BDは半円の弧であり、線分 BD は円 O の直径だから

円 O の半径は、BD÷2= $2\sqrt{3}$ ÷2= $\sqrt{3}$ (cm)

 \triangle ADF において三平方の定理より、 $AF^2=1^2+(2\sqrt{2})^2=9$ AF>0 だから、AF=3(cm)

問1より \triangle ADF \bigcirc \triangle BED であるから、DE: FD=BD: AF、DE: $1=2\sqrt{3}:3$ 、3DE= $2\sqrt{3}$ 、

$$DE = \frac{2}{3}\sqrt{3}(cm)$$

(2)

右の図のように線分 AC をひき、点 E を通り線分 AB, FC に平行な直線と線分 AC, BC との交点をそれぞれ G, H とする。

 $\triangle ADF$ と $\triangle CEF$ において、(1)より、AF=3cm、CF=2+1=3(cm)だから、

AF=CF…① DEに対する円周角だから、 ∠DAF=∠ECF…②

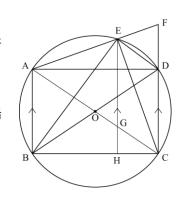
共通な角だから、 $\angle AFD = \angle CFE \cdots$ ③ ①、②、③より、1 組の辺とその両端の角がそれぞれ等しいので、 $\triangle ADF \equiv \triangle CEF$ だから EF = DF = 1cm

AE: EF=(3-1): 1=2:1で,三角形と比の定理より EG=FC× $\frac{2}{3}$ =2(cm) 平行線と比の定理より,BH: HC=AE: EF=2:1 だから,

三角形と比の定理より、 $GH=AB \times \frac{1}{3} = \frac{2}{3} (cm)$ よって、 $EH=2+\frac{2}{3}=\frac{8}{3} (cm)$

EH // FC より、平行線の同位角は等しいから、 / EHB = // FCB = 90° なので、

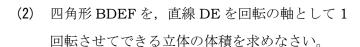
$$\triangle BCE = \frac{1}{2} \times BC \times EH = \frac{1}{2} \times 2\sqrt{2} \times \frac{8}{3} = \frac{8}{3}\sqrt{2}(cm^2)$$

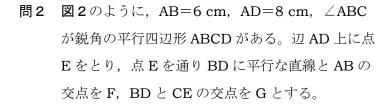


各問いに答えなさい。

(長野県 2019 年度)

- 問1 図1のように、AB=6 cm、AD=8 cm の長方形 ABCD がある。辺 AD の中点を E、点 E を通り BD に平行な直線と AB の交点を F とする。
 - (1) EFの長さを求めなさい。





- (1) **ZABD** と大きさの等しい角を、次の**ア**~**エ**から すべて選び、記号を書きなさい。
 - ア ∠ADC
 - イ ∠AEF
 - ウ ∠AFE
 - **⊥** ∠BDC

- (3) 図3は、図2の図形で、 \triangle CDE が正三角形となるように、 \angle ABC の大きさと点 E の位置をかえ、点 A と C を結び、AC と BD の交点を H としたものとする。
 - ① BD の長さを求めなさい。
 - ② △CGHの面積を求めなさい。

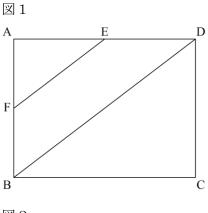


図 2

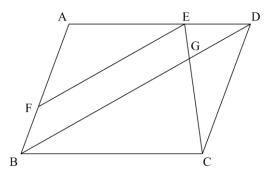
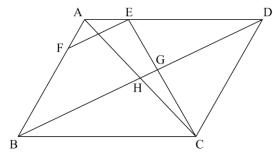


図3



問 1	(1)		cm	
	(2)		cm ³	
	(1)			
問 2	(2)			
	(3)	1	cm	
		2	cm^2	

問 1

(1)5

(2) 84 π

問2

(1)ウ, エ

(2)

△GBC と△GDE について

対頂角は等しいから

 $\angle BGC = \angle DGE \cdots \bigcirc$

四角形 ABCD は平行四辺形なので

BC // DE より

平行線の錯角は等しいから

 $\angle GBC = \angle GDE \cdots ②$

①, ②から

2組の角がそれぞれ等しいので

 $\triangle GBC \circ \triangle GDE$

(3)

 $\bigcirc 2\sqrt{37}$

② $\frac{6\sqrt{3}}{7}$

解説

問 1

(1)

E は辺 AD の中点だから、AE= $\frac{1}{2}$ AD= $\frac{1}{2}$ ×8=4(cm)

FE // BD だから、AF: AB=AE: AD=1:2 よって、AF= $\frac{1}{2}$ AB= $\frac{1}{2}$ ×6=3(cm)

 \triangle AFE は \angle A=90°の直角三角形だから、三平方の定理より、EF²=AF²+AE²=3²+4²=25

EF>0 だから、EF= $\sqrt{25}$ =5(cm)

(2)

四角形 BDEF を直線 DE を回転の軸として 1 回転させてできる立体は、 $\triangle ABD$ を 1 回転させてできる円錐 P から $\triangle AFE$ を 1 回転させてできる円錐 Q を取り除いた形になる。

円錐 P は底面の半径が AB=6cm, 高さが AD=8cm で、円錐 Q は底面の半径が AF=3cm, 高さが

AE=4cm だから、求める立体の体積は、 $\frac{1}{3} \times \pi \times 6^2 \times 8 - \frac{1}{3} \times \pi \times 3^2 \times 4 = 96 \pi - 12 \pi = 84 \pi (cm^3)$

問2

(1)

FE // BD で、平行線の同位角は等しいから、 ∠AFE=∠ABD

また、AB // DC で、平行線の錯角は等しいから、 ∠BDC=∠ABD

よって, あてはまるのは**ウ**とエ。

なお、平行四辺形の対角は等しいから \angle ADC= \angle ABC で、 \angle ABC は \angle ABD より大きい。よって、**ア**はあてはまらない。また、FE // BD より、 \angle AEF= \angle ADB もし、 \triangle ABD が AB=AD の二等辺三角形であれば \angle ADB= \angle ABD となるが、AB=6cm、AD=8cm だから、 \angle ADB と \angle ABD は等しくない。よって、**イ**もあてはまらない。

(2)

対頂角は等しいから、 ∠BGC=∠DGE

BC // DE より、平行線の錯角は等しいから、 \angle GBC= \angle GDE、 \angle GCB= \angle GED これらのうちどれか 2 つを使って、2 組の角がそれぞれ等しいことを示せばよい。

(3)

(1)

点Dから辺BCの延長に垂線DIをひく。

△CDE は正三角形だから、∠CDE=60°

AD // BI で、平行線の錯角は等しいから、

 $\angle DCI = \angle CDE = 60^{\circ}$

よって、 $\triangle DCI$ は 60° の角をもつ直角三角形だから、DC:

CI : DI = 2 : 1 : $\sqrt{3}$

$$CI = \frac{1}{2}DC = \frac{1}{2} \times 6 = 3(cm)$$

$$DI = \sqrt{3}CI = \sqrt{3} \times 3 = 3\sqrt{3}(cm)$$

よって、 $\triangle BID$ で、三平方の定理より、 $BD^2=BI^2+DI^2=(8+3)^2+(3\sqrt{3})^2=148$

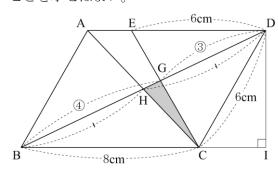
BD>0 だから,BD= $\sqrt{148}$ = $2\sqrt{37}$ (cm)

2

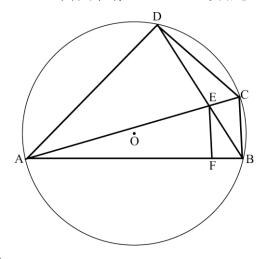
また、平行四辺形の対角線はそれぞれの中点で交わるから、BH=DH よって、 $BH=\frac{1}{2}BD$

$$HG = BG - BH = \frac{4}{7}BD - \frac{1}{2}BD = \frac{8}{14}BD - \frac{7}{14}BD = \frac{1}{14}BD$$

 \triangle CGH b \triangle BCD は、それぞれ HG、BD を底辺 b したときの高さが等しいから、面積の比は底辺の長さの比になる。よって、 \triangle CGH= $\frac{1}{14}$ \triangle BCD= $\frac{1}{14}$ $\times \frac{1}{2}$ \times BC \times DI= $\frac{1}{14}$ $\times \frac{1}{2}$ \times 8 \times 3 $\sqrt{3}$ = $\frac{6\sqrt{3}}{7}$ (cm²)



【問 13】



次の問1,問2に答えなさい。

(岐阜県 2019 年度)

間1 $\triangle ACD \circ \triangle EBF$ であることを証明しなさい。

問2 AC が円 O の直径で、OA=6 cm、BC=3 cm、CE=2 cm のとき、

- (1) ABの長さを求めなさい。
- (2) BFの長さを求めなさい。
- (3) △ACD の面積を求めなさい。

	〔証明		
問 1			
問 2	(1)	cm	
	(2)	cm	
	(3)	cm^2	

問 1

〔証明〕

 \triangle ACD \land \land EBF \circlearrowleft

ADに対する円周角だから

 $\angle ACD = \angle EBF \cdots (1)$

CDに対する円周角だから

 $\angle CAD = \angle EBC \cdots 2$

BC // FE より, 平行線の錯角だから

∠BEF=∠EBC ···③

②, ③から, ∠CAD=∠BEF ···④

①, ④から

2組の角がそれぞれ等しいので

 $\triangle ACD \circ \triangle EBF$

問2

 $(1) 3\sqrt{15}$ cm

$$(2)\frac{\sqrt{15}}{2}$$
 cm

 $(3) 9\sqrt{15}$ cm²

解説

問 1

△ACD と△EBFで

 \widehat{AD} に対する円周角だから、 $\angle ACD = \angle EBF \cdots ①$

CDに対する円周角だから、∠CAD=∠EBC…②

BC // FE より、平行線の錯角だから

 $\angle BEF = \angle EBC \cdots (3)$

②, ③から, ∠CAD=∠BEF…④

①, ④から, 2組の角がそれぞれ等しいので $\triangle ACD$ \circ $\triangle EBF$

問2

(1)

半円の弧に対する円周角は90°だから

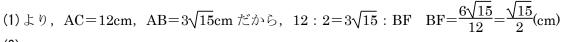
△ABC は直角三角形。

AC=2OA=12(cm)だから, 三平方の定理より,

$$AB = \sqrt{12^2 - 3^2} = \sqrt{135} = 3\sqrt{15}$$
 (cm)

(2)

BC // FE だから、三角形と比の定理より AC: CE=AB: BF



(3)

BC \parallel FE だから,三角形と比の定理より,AE:AC=EF:CB (12-2):12=EF:3 EF $=\frac{5}{2}$ (cm)

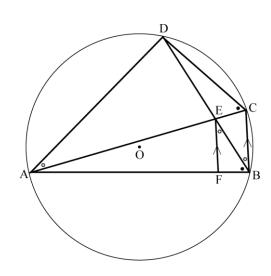
よって、
$$\triangle EBF = \frac{1}{2} \times \frac{\sqrt{15}}{2} \times \frac{5}{2} = \frac{5\sqrt{15}}{8} (cm^2)$$

また△EBF で三平方の定理より,BF²=
$$\left(\frac{\sqrt{15}}{2}\right)^2 = \frac{15}{4}$$
,EF²= $\left(\frac{5}{2}\right)^2 = \frac{25}{4}$ だから,EB= $\sqrt{\frac{15}{4} + \frac{25}{4}} = \sqrt{10}$ (cm)

問1より、 $\triangle ACD$ $<math> \triangle EBF$ で、相似比は $AC:EB=12:\sqrt{10}$

したがって、面積比は $\triangle ACD: \triangle EBF = 12^2: (\sqrt{10})^2 = 144: 10 = 72:5$

よって、
$$\triangle ACD = \triangle EBF \times \frac{72}{5} = \frac{5\sqrt{15}}{8} \times \frac{72}{5} = 9\sqrt{15} (cm^2)$$

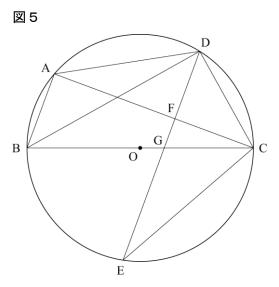


【問 14】

図5において、3点A、B、Cは円Oの円周上の点であり、BCは円Oの直径である。ÂC上に点Dをとり、点Dを通りACに垂直な直線と円Oとの交点をEとする。また、DEとAC、BCとの交点をそれぞれF、Gとする。このとき、次の問1、問2に答えなさい。

(静岡県 2019 年度)

問1 $\triangle DAC \circ \triangle GEC$ であることを証明しなさい。



問2 $\widehat{AD}:\widehat{DC}=3:2$, $\angle BGE=70^{\circ}$ のとき, $\angle EDC$ の大きさを求めなさい。

	〔証明〕	 		
問 1				
問 2	度			

問 1

〔証明〕

 $\triangle DAC \ \angle \triangle GEC \ \vec{c}$

DC に対する円周角は等しいから

 $\angle DAC = \angle GEC \cdots (1)$

仮定より, ∠GFC=90° …②

直径に対する円周角より、 ∠BAC=90° …③

②, ③より, 同位角が等しいから, AB // FG …④

④より, 平行線の錯角は等しいから

 $\angle ABD = \angle EDB \cdots \bigcirc 5$

ADに対する円周角は等しいから

∠ABD=∠ACD ···⑥

BEに対する円周角は等しいから

 $\angle EDB = \angle ECG \cdots ?$

- ⑤, ⑥, ⑦より, ∠ACD=∠ECG …⑧
- ①, ⑧より, 2組の角がそれぞれ等しいから

 $\triangle DAC \circ \triangle GEC$

問248 度

解説

問1

 \triangle DAC と \triangle GEC の辺の長さの関係について何も記されていないので、相似条件は「2 組の角がそれぞれ等しい」を用いることが予想される。同じ弧に対する円周角は等しいことなどを利用し、等しい 2 組の角を見つける。

問 2

円周角の大きさは同じ弧に対する中心角の半分で、中心角は弧の長さに比例するから、円周角も弧の長さに比例する。 $\angle ABD$ 、 $\angle DBC$ はそれぞれ \widehat{AD} 、 \widehat{DC} に対する円周角だから、 \widehat{AD} : \widehat{DC} = 3 : 2 のとき、 $\angle ABD$ = 3a°、 $\angle DBC$ = 2a° とおける。また、間 1 より、 $\angle EDB$ = $\angle ABD$ = 3a°

△BGDで、内角と外角の性質より、∠BGE=∠DBG+∠GDB

よって、2a+3a=70 5a=70 a=14 したがって、 $\angle ABD=3\times 14^{\circ}=42^{\circ}$

また、△DFCで、内角と外角の性質より、∠FDC=∠AFD-∠FCD

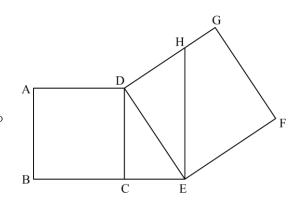
仮定より ∠AFD=90°で、問1より ∠FCD= ∠ABD=42°だから、∠EDC=90°-42°=48°

【問 15】

右図において、四角形 ABCD は 1 辺の長さが 3 cm の正 方形である。E は直線 BC 上にあって C について B と反対 側にある点であり、CE < BC である。

F, G は直線 DC について E と同じ側にある点であり、4 A 点 D, E, F, G を結んでできる四角形 DEFG は正方形である。H は,E を通り辺 DC に平行な直線と線分 DG との交点である。CE=x cm とし,0<x<3 とする。

次の問いに答えなさい。



(大阪府 A 2019 年度)

- 問1 正方形 ABCD の対角線 AC の長さを求めなさい。
- 間2 \triangle DCE の面積を x を用いて表しなさい。
- 問3 次は、△DCE∞△EDHであることの証明である。
 (a) 、(b) に入れるのに適している
 「角を表す文字」をそれぞれ書きなさい。また、[©] (c) こから適しているものを一つ選び、記号を○で囲みなさい。

〔証明〕
 △DCE と△EDH において
 四角形 ABCD は正方形だから ∠DCE=90°…⑤
 四角形 DEFG は正方形だから ∠ ③ =90°…⑥
 ⑥、②より ∠DCE=∠ ④ …⑤
 DC // HE であり、平行線の錯角は等しいから ∠CDE=∠ ⑥ …②
 ⑤、②より、
 ⑥ 「ア 1組の辺とその両端の角 イ 2組の辺の比とその間の角 ウ 2組の角 〕がそれぞれ等しいから △DCE∞△EDH

問4 x=2 であるときの線分 DH の長さを求めなさい。求め方も書くこと。

問 1					cm	
問2					cm ²	
	a					
問3	b					
	©		ア	1	ウ	
	〔求め	方〕				
問 4						
				cm		

```
解答
```

問 $13\sqrt{2}$ cm

問 $2\frac{3}{2}x$ cm²

問3

(a)EDH

(b)DEH

©ウ

問4

〔求め方〕

 $\angle DCE = 90^{\circ}$ だから $DE^2 = DC^2 + CE^2$

これを解くと、y>0 より $y=\sqrt{13}$

 \triangle DCE∞ \triangle EDH だから

CE : DH=DC : ED=3 : $\sqrt{13}$

よって DH=
$$\frac{\sqrt{13}}{3}$$
CE= $\frac{2\sqrt{13}}{3}$ (cm)

$$\frac{2\sqrt{13}}{3}$$
 cm

解説

問 1

A と C を結んでできる \triangle ABC は、 \angle ABC=90°の直角二等辺三角形だから、AB: AC=1: $\sqrt{2}$ よって、AC= $\sqrt{2}$ AB= $\sqrt{2}$ ×3=3 $\sqrt{2}$ (cm)

問 2

底辺がxcm, 高さが3cm の三角形だから, 面積は, $\frac{1}{2} \times x \times 3 = \frac{3}{2}x$ (cm²)

問3

- a ∠DCE に対応する角が入るから、∠EDH
- ⑥ ∠CDE に対応する角が入るから、∠DEH
- © ②と②で、2組の角がそれぞれ等しいことを示している。

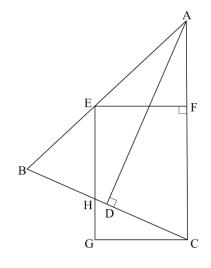
問 4

まず、△DCEで、三平方の定理を使って辺 DEの長さを求める。

次に、相似な図形では対応する辺の長さの比が等しいことを利用して、DH の長さを求める。

【問 16】

右図において、 \triangle ABC は AB=AC=11 cm の二等辺三角形であり、頂角 \angle BAC は鋭角である。D は、A から辺 BC にひいた垂線と辺 BC との交点である。E は辺 AB 上にあって A、B と異なる点であり、AE>EB である。F は、E から辺 AC にひいた垂線と辺 AC との交点である。G は、E を通り辺 AC に平行な直線と C を通り線分 EF に平行な直線との交点である。C のとき、四角形 EGCF は長方形である。H は、線分 EG と辺 BC との交点である。このとき、4 点 B、H、D、C はこの順に一直線上にある。



次の問いに答えなさい。

(大阪府 B 2019 年度)

- 問1 \triangle AEFの内角 \angle AEFの大きさをa° とするとき、 \triangle AEFの内角 \angle EAFの大きさをa を用いて表しなさい。
- 間2 $\triangle ABD \triangle \triangle CHG$ であることを証明しなさい。
- 問3 HG=2 cm, HC=5 cm であるとき,
 - (1) 線分BDの長さを求めなさい。

(2) 線分 FC の長さを求めなさい。

問 1		度	
問 2	〔証明		
問3.	(1)	cm	
	(2)	cm	

```
解答
```

問190-a 度

問2

〔証明〕

△ABD と△CHG において

AD⊥BC だから ∠ADB=90°…⑦

四角形 EGCF は長方形だから

 $\angle CGH = 90^{\circ} \cdots \bigcirc \bigcirc$

⑦, ②より ∠ADB=∠CGH…⑨

△ABC は AB=AC の二等辺三角形だから

 $\angle ABD = \angle ACD \cdots \textcircled{=}$

EG // AC であり、平行線の錯角は等しいから

∠CHG=∠ACD···⑦

国, 愛より ∠ABD=∠CHG… 愛

⑦, 切より、2組の角がそれぞれ等しいから

 $\triangle ABD \circ \triangle CHG$

問3

$$(1)\frac{22}{5}$$
 cm

$$(2)\frac{27}{4}$$
 cm

解説

問 1

$$\angle AFE = 90$$
°だから、 $\angle EAF = 180$ ° -90 ° $-a$ ° $=90$ ° $-a$ ° よって、(90-a)度

問 2

二等辺三角形の性質や平行線の性質を利用して,2組の角がそれぞれ等しいことを示す。

問3

(1)

 $\triangle ABD$ $\triangle CHG$ より、AB: CH=BD: HG よって、BD=xcm とすると、

$$11:5=x:2$$
 $5x=22$ $x=\frac{22}{5}$

(2)

$$BC = 2BD = 2 \times \frac{22}{5} = \frac{44}{5} (cm)$$
 $\sharp \circ \tau$, $BH = BC - HC = \frac{44}{5} - 5 = \frac{44}{5} - \frac{25}{5} = \frac{19}{5} (cm)$

また、 $\triangle ABC$ で、EH//AC より、EH:AC=BH:BC よって、EH=ycm とすると

$$y: 11 = \frac{19}{5}: \frac{44}{5}$$
 $y: 11 = 19: 44$ $44y = 11 \times 19$ $y = \frac{11 \times 19}{44} = \frac{19}{4}$

$$FC = EG = EH + HG = \frac{19}{4} + 2 = \frac{27}{4} (cm)$$

【問 17】

図3は次のような手順 $1\sim5$ でかかれたものである。ただし、手順 4 のについては図3にかかれていない。下の $(1)\sim(3)$ に答えなさい。

(島根県 2019 年度)

図3のかき方

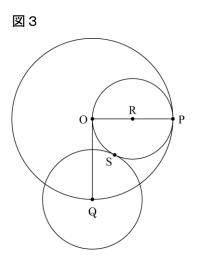
手順 1…点 O を中心とし、半径 2 cm の円 O₁ をかく。

手順 2…円 O_1 の周上に 2 点 P, Q を $\angle POQ = 90$ ° となるようにとる。

手順 3…線分 OP の中点 R を中心とし、半径 1 cm の円 O_2 をかく。

手順 4… を点 S とする。

手順 5…点 Q を中心として点 S で円 O_2 と接する円 O_3 をかく。



- (1) に、点S をどのようにとればよいか説明することがらをかきいれ、**手順**4 を完成させなさい。
- (2) 円 O₃の半径を求めなさい。
- (3) 図4のように、 H O_1 E H O_3 の交点のうち、 A P に近い方の交点を点 T とする。図4の O OQT と問2で考えた図2の ABC が相似であることを、次のように証明した。この証明を完成させなさい。

【証明】

 \triangle OQT と \triangle ABC において

2点Q, Tは円O₁の周上の点だから, OQ=OT=2cm

問2より、AB=AC=1 cm

よって、OQ:AB=OT:AC=2:1 …①

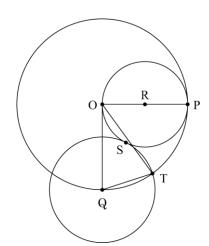


図 4

 $\triangle OQT \circ \triangle ABC$

(1)	手順 4…	を点Sとする。
(2)	cm	
(3)	〔証明〕 △OQTと△ABCにおいて 2点Q、Tは円O ₁ の周上の点だから、 OQ=OT=2cm 問2より、AB=AC=1cm よって、OQ:AB=OT:AC=2:1 …①	

(1) 手順 4…線分 QR と円 O₂の交点を点 S とする。

(2) $(\sqrt{5}-1)$ cm

(3)

〔証明〕

 \triangle OQT \land \land ABC \land thr

2 点 Q, T は円 O_1 の周上の点だから,

OO = OT = 2 cm

問2より、AB=AC=1cm

よって、OQ:AB=OT:AC=2:1 …①

また、点Tは円 O_3 の周上の点だから、

 $QT = (\sqrt{5} - 1)cm$

問2の(3)より,BC= $\frac{\sqrt{5-1}}{2}$ cm

よって、QT:BC=2:1 …②

①,②より3組の辺の比がすべて等しいので

 $\triangle OQT \circ \triangle ABC$

解説

(1)

線分 QR と円 Q_2 との交点が S となる。

補足

線分 QR と円 O_2 との交点を X とし、円 O_2 の下側の \widehat{OP} 上に X とは異なる位置にある点 S をとると、直線 QR に対して点 S と対称な位置にある点 S' がとれて QS=QS' となる。中心が点 Q、半径が QS の円は、 QS 点 QS を通るため、円 QS と QS 点 QS ので、 QS の円は接しているとはいえない。点 QS を点 QS の位置にとると、点 QS は点 QS と一致するので、円 QS と点 QS で接する円がかける。

(2)

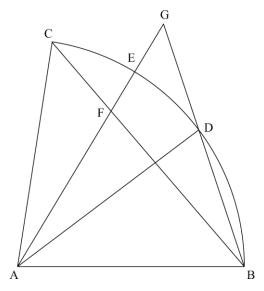
 \triangle OQR は OR=1cm, OQ=2cm, \angle QOR=90°の直角三角形だから,三平方の定理より QR= $\sqrt{1^2+2^2}$ = $\sqrt{5}$ (cm) (1)より,点 S は線分 QR と円 O₂ との交点だから,円 O₃ の半径 QS は QS=QR-RS= $\sqrt{5}$ -1(cm)

(3)

 \triangle ABC は3辺の長さ、3つの内角の大きさがすべてわかっているのに対して、 \triangle OQT は3辺の長さがわかっているが、角度に関する情報が全く与えられていないことから、相似条件の「3組の辺の比がすべて等しい」が使えるように証明を進めていくとよい。

【問 18】

下の図のような、おうぎ形 ABC があり、 \widehat{BC} 上に点 D をとり、 \widehat{DC} 上に点 E を、 \widehat{DE} = \widehat{EC} となるようにとる。また、線分 AE と線分 BC の交点を F、線分 AE の延長と線分 BD の延長の交点を G とする。



次の問1,問2に答えなさい。

(山口県 2019 年度)

- **問1** \triangle GAD \bigcirc △GBF であることを証明しなさい。
- **問2** おうぎ形 ABC の半径が 8 cm, 線分 EG の長さが 2 cm であるとき, 線分 AF の長さを求めなさい。

問 1	〔証明〕	
問 2	cm	

問 1

〔証明〕

 \triangle GAD と \triangle GBF で

共通な角だから

 $\angle DGA = \angle FGB \cdots \textcircled{1}$

$$\widehat{DE} = \widehat{EC}$$
 $\hbar \delta$, $\widehat{DE} = \frac{1}{2}\widehat{DC}$ \hbar

$$\angle DAE = \frac{1}{2} \angle DAC \cdots ②$$

また, 円周角と中心角の関係から

$$\angle DBC = \frac{1}{2} \angle DAC \cdots 3$$

②, ③から

 $\angle DAE = \angle DBC$

よって

 $\angle DAG = \angle FBG \cdots \textcircled{4}$

①, ④から

2組の角がそれぞれ等しいので

 $\triangle GAD$ $\triangle GBF$

問
$$2\frac{32}{5}$$
 cm

解説

問 1

円周角の大きさは、同じ弧に対する中心角の大きさの $\frac{1}{2}$ であることなどを利用して、2つの三角形で2組の角がそれぞれ等しいことを示す。

問2

 \triangle GAD \trianglerighteq △CAF において、 $\widehat{DE}=\widehat{EC}$ より、 $\angle DAE=\angle EAC$ よって、 $\angle DAG=\angle FAC\cdots$ ⑤ また、 $\triangle GAD \diamondsuit \triangle GBF$ より、 $\angle GDA=\angle GFB\cdots$ ⑥ 対頂角は等しいから、 $\angle GFB=\angle CFA\cdots$ ⑦ ⑥、⑦より、 $\angle GDA=\angle CFA\cdots$ ⑧ ⑤、⑧より、2 組の角がそれぞれ等しいから、 $\triangle GAD \diamondsuit \triangle CAF$ よって、AG:AC=AD:AF AG=8+2=10(cm)、AC=AD=8cm だから、AF=xcm \trianglerighteq すると、

 $10:8=8:x \quad 10x=64 \quad x=\frac{32}{5}$

【問 19】

図のように、線分 AB を直径とする円 O がある。円 O の周上に点 C をとり、BC < AC である三角形 ABC をつくる。三角形 ACD が AC = AD の直角二等辺三角形となるような点 D をとり、辺 CD と直径 AB の 交点を E とする。また、点 D から直径 AB に垂線をひき、直径 AB との 交点を F とする。このとき、次の問 1 ・問 2 に答えなさい。

A F B

(高知県 A 2019 年度)

問1 △ABC∽△DAF を証明せよ。

問2 AB=10 cm, BC=6 cm, CA=8 cm とするとき,線分 FE の長さを求めよ。

	〔証明〕 △ABC と△DAF において
問 1	
	したがって $\triangle ABC$ $ \bigcirc \triangle DAF$
問2	cm

問 1

〔証明〕

 \triangle ABC $\geq \triangle$ DAF (tance)

直径 AB に対する円周角は 90° であることから

 $\angle ACB = 90^{\circ} \cdots 1$

仮定から

 $\angle DFA = 90^{\circ} \cdots ②$

①, ②より

 $\angle ACB = \angle DFA \cdots 3$

△ACD は、AC=AD の直角二等辺三角形より

 $\angle DAC = \angle BAC + \angle DAF = 90^{\circ} \cdots \textcircled{4}$

 \triangle ABC において、3つの内角の和は 180°であり

①より∠ACB=90°であることから

 $\angle BAC + \angle ABC = 90^{\circ} \cdots \odot$

4, 5より

 $\angle ABC = \angle DAF \cdots 6$

③, ⑥より

2組の角がそれぞれ等しい

したがって △ABC∽△DAF

問 $2\frac{32}{35}$ cm

解説

問 1

直径に対する円周角は 90° であることなどを利用して、2 組の角がそれぞれ等しいことを導く。 間 2

△ABC∽△DAFより、AB: DA=BC: AF AB=10cm、DA=CA=8cm、BC=6cm だから

$$10: 8=6: AF \quad 10AF=48 \quad AF=\frac{24}{5}cm$$

また、∠ABC=∠DAFで、錯角が等しいから、AD // CB

よって、AE:BE=AD:BC=8:6=4:3 だから、AE=AB× $\frac{4}{4+3}$ =10× $\frac{4}{7}$ = $\frac{40}{7}$ (cm)

$$FE = AE - AF = \frac{40}{7} - \frac{24}{5} = \frac{200}{35} - \frac{168}{35} = \frac{32}{35} (cm)$$

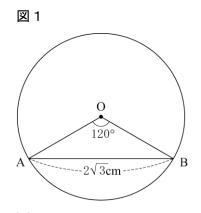
【問 20】

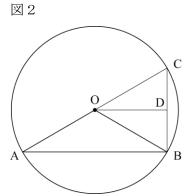
図 $1 \sim \mathbb{Z}$ 4 のように、円 O の周上に 2 点 A,B があり、 $AB=2\sqrt{3}$ cm, $\angle AOB=120^\circ$ である。このとき、次の問いに答えなさい。

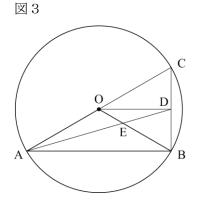
(長崎県 2019 年度)

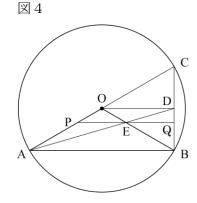
問1 ∠OAB の大きさは何度か。

- 問2 図2~図4のように、線分 AO の延長と円 O との交点を C とする。さらに、点 O を通り線分 AB に平行な直線と線分 BC との交点を D とする。このとき、次の(1)~(3)に答えよ。
 - (1) 線分 AC の長さは何 cm か。
 - (2) 線分 OD の長さは何 cm か。
 - (3) 図3, 図4のように、線分ADと線分OBとの交点をEとするとき、次の①, ②に答えよ。
 - ① $\triangle ODE \triangle \triangle BAE$ であることを証明せよ。
 - ② 図4のように、点 E を通り線分 AB に平行な直線と線分 AC、線分 BC との交点をそれぞれ P、Q とする。このとき、四角形 OPQD の面積は何 cm²か。









問 1		_	OAB=	۰	
	(1)			cm	
	(2)			cm	
問 2	(3)	1			
		2		cm^2	

```
解答
問 1 ∠OAB=30 (°)
問 2
(1)4
        [cm]
(2)\sqrt{3}
          [cm]
(3)
(1)
\triangleODE \triangle\triangleBAE \triangleRANT
∠OED=∠BEA (対頂角) ···①
∠ODE=∠BAE (平行線の錯角) …②

 ①より

2組の角がそれぞれ等しいので
\triangle ODE \circ \triangle BAE
2\frac{7\sqrt{3}}{18}
          \lceil cm^2 \rceil
解説
問 1
OA, OB は半径だから、△OAB は OA=OB の二等辺三角形である。
よって、\angle OAB = (180^{\circ} - 120^{\circ}) \div 2 = 30^{\circ}
問2
(1)
線分 AC は円 O の直径になるから、\angle ABC = 90^{\circ} 問 1 より\angle OAB = 30^{\circ}だから、\triangle ABC は 30°
と 60°の角をもつ直角三角形で,AC:AB=2:\sqrt{3} AC=\frac{2}{\sqrt{3}}AB=\frac{2}{\sqrt{3}}×2\sqrt{3}=4(cm)
(2)
\triangle CAB \  \  \, \  \, CAB \  \  \, \  \, CAB = CO : CA = 1 : 2 \quad OD = \frac{1}{2}AB = \frac{1}{2} \times 2\sqrt{3} = \sqrt{3}(cm)
(3)
(1)
△ODE と△BAE で、対頂角は等しいから、∠OED=∠BEA…①
また、OD//ABで、平行線の錯角は等しいから、 ∠ODE= ∠BAE…②、 ∠DOE= ∠ABE…③
①,②,③のうち、いずれか2つを使って、2組の角がそれぞれ等しいことを示せばよい。
(1)より、∠ABC=90°で、OD、PQ は AB に平行だから、四角形 OPQD は∠ODQ=∠PQD=90°の台形
になる。(2)より、OD = \sqrt{3}cm
また、①より、\triangleODE\bigcirc\triangleBAE だから、OE: BE=DE: AE=OD: BA=1: 2
したがって、\triangle OABで、PE: AB=OE: OB=1: (1+2)=1: 3 PE=\frac{1}{3}AB=\frac{1}{3}\times 2\sqrt{3}=\frac{2\sqrt{3}}{3}(cm)
同様に、 \triangle DAB で、 EQ:AB=DE:DA=1:(1+2)=1:3 EQ=\frac{1}{3}AB=\frac{1}{3}\times 2\sqrt{3}=\frac{2\sqrt{3}}{3}(cm)
さらに、DQ: DB=DE: DA=1:3 DQ=\frac{1}{3}DB ここで、CD: DB=CO: OA=1:1 より、
DB = \frac{1}{2}CB = \frac{1}{2} \times \frac{1}{2}AC = \frac{1}{2} \times \frac{1}{2} \times 4 = 1(cm) L \supset C, DQ = \frac{1}{3} \times 1 = \frac{1}{3}(cm)
```

四角形 $OPQD = \frac{1}{2} \times (OD + PQ) \times DQ = \frac{1}{2} \times (OD + PE + EQ) \times DQ = \frac{1}{2} \times \left(\sqrt{3} + \frac{2\sqrt{3}}{3} + \frac{2\sqrt{3}}{3}\right) \times \frac{1}{3} = \frac{7\sqrt{3}}{18} (cm^2)$

【問 21】

図1~図3のように、円周上に3点A、B、Cがあり、AB=AC=3 cm、BC=2 cm である。このとき、次の問いに答えなさい。

(長崎県 2019 年度)

問1 図2のように、点Aから線分BCにひいた垂線と線分BCとの交点をHとするとき、線分AHの長さは何cmか。

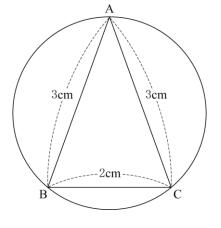
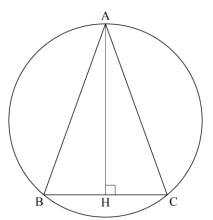


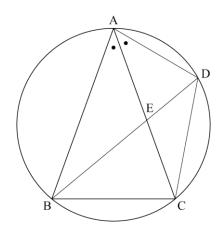
図 2

図 1

- 問2 図3のように、点 B をふくまない弧 AC 上に \angle BAC= \angle CAD となる点 D をとり、線分 AC と線分 BD との交点を E とする。このとき、次の(1) \sim (4)に答えよ。
 - (1) △ABC ∽ △BEC であることを証明せよ。
 - (2) $\triangle ABE$ の面積は何 cm² か。



- 図 3
- (3) ∠AEB と大きさが等しい角を、次の①~②の中から1つ選び、その番号を書け。
 - ① ∠ABC
 - ② ∠BCD
 - ③ ∠ADC
 - **④** ∠BAD
- (4) 四角形 ABCD の面積は何 cm^2 か。



問 1		cm	
問 2	(1)		
	(2)	cm^2	
	(3)		
	(4)	cm^2	

```
解答
```

問 $12\sqrt{2}$ cm

問2

(1)

 \triangle ABC \triangle \triangle BEC において

∠ACB=∠BCE (共通) …①

【∠CAD=∠EBC (弧CDに対する円周角)

より

 $\angle BAC = \angle EBC \cdots ②$

①, ②より

2組の角がそれぞれ等しいので

 $\triangle ABC \circ \triangle BEC$

$$(2)\frac{10\sqrt{2}}{9}$$
 (cm^2)

(3)(3)

$$(4)\frac{28\sqrt{2}}{9}$$
 $[cm^2]$

解説

問 1

 \triangle ABH \Diamond ACH で, \angle AHB= \angle AHC=90°,AB=AC,AH=AH(共通) 直角三角形の斜辺と他の 1 辺が それぞれ等しいから, \triangle ABH= \triangle ACH よって,BH=CH=1cm

 \triangle ABHで、三平方の定理より、AH2=AB2-BH2=32-12=8 AH>0 だから、AH= $\sqrt{8}$ = $2\sqrt{2}$ (cm)

問 2

(1)

同じ弧に対する円周角は等しいことなどを利用して、2組の角がそれぞれ等しいことを示す。

(2)

(1)より、△ABC∽△BECで、相似比は、AC:BC=3:2 よって、面積の比は 32:22=9:4

 $\triangle ABC$ の面積は、 $\frac{1}{2} \times BC \times AH = \frac{1}{2} \times 2 \times 2\sqrt{2} = 2\sqrt{2}(cm^2)$

よって、
$$\triangle BEC = \frac{4}{9} \triangle ABC = \frac{4}{9} \times 2\sqrt{2} = \frac{8\sqrt{2}}{9} (cm^2)$$

$$\triangle ABE = \triangle ABC - \triangle BEC = 2\sqrt{2} - \frac{8\sqrt{2}}{9} = \frac{10\sqrt{2}}{9} (cm^2)$$

(3)

△AED の内角と外角の性質より、∠AEB=∠EAD+∠ADE

仮定より、 $\angle EAD = \angle BAC$ また、 \widehat{BC} に対する円周角だから、 $\angle BAC = \angle BDC$

よって、 $\angle EAD + \angle ADE = \angle BDC + \angle ADE = \angle ADC$

したがって、 ∠AEB と大きさの等しい角は③の∠ADC

(4)

 \triangle ABE $\ge \triangle$ ACD で、AB=AC、 \angle BAE= \angle CAD、 \widehat{AD} に対する円周角だから、 \angle ABE= \angle ACD 1 組の辺とその両端の角がそれぞれ等しいから、 \triangle ABE= \triangle ACD

よって、(2)より、
$$\triangle ACD = \frac{10\sqrt{2}}{9} (cm^2)$$

四角形 ABCD=
$$\triangle$$
ABC+ \triangle ACD= $2\sqrt{2}+\frac{10\sqrt{2}}{9}=\frac{28\sqrt{2}}{9}$ (cm²)

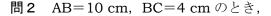
【問 22】

右の図は、点Oを中心とする円で、線分ABは円の直径である。点Cは線分OB上にあり、2点D, Eは、Cを通る線分OBの垂線と円Oとの交点である。点Fは線分BE上にあって、OF \bot BEである。また、点GはOFの延長とBにおける円Oの接線との交点であり、点HはFOの延長とと線分ADとの交点である。

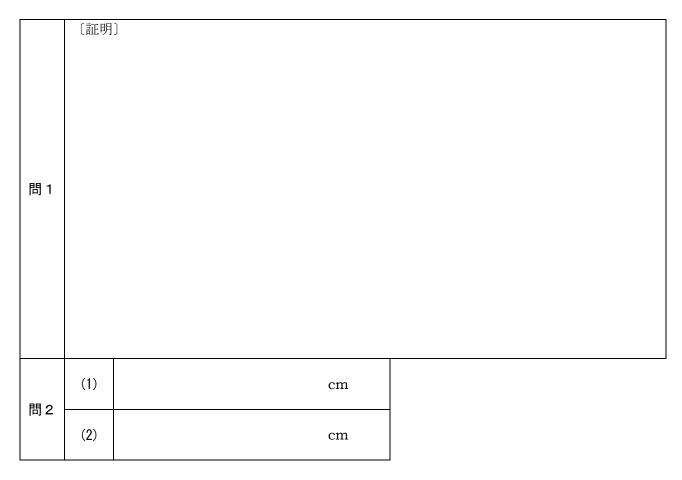
このとき、次の各問いに答えなさい。ただし、根号がつくときは、根号のついたままで答えること。

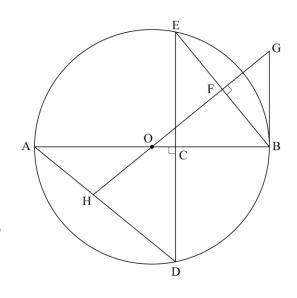
(熊本県 2019 年度)

問1 $\triangle ADC \hookrightarrow \triangle BGF$ であることを証明しなさい。



- (1) 線分 CE の長さを求めなさい。
- (2) 線分 DH の長さを求めなさい。





問 1

〔証明〕

 \triangle ADC \triangle \triangle BGF において

AB LDC だから

 $\angle DCA = 90^{\circ} \cdots (1)$

OF⊥BE だから

 $\angle GFB = 90^{\circ} \cdots \bigcirc \bigcirc$

①, ②より

 $\angle DCA = \angle GFB \cdots 3$

∠DAC と∠DEB はDBに対する円周角だから

 $\angle DAC = \angle DEB \cdots \textcircled{4}$

BG は円の接線で、AB は円の直径だから

 $\angle ABG = 90^{\circ}$ であって、①から、DE // BG である。

よって

 $\angle DEB = \angle GBF \cdots \bigcirc 5$

(4), (5)より

 $\angle DAC = \angle GBF \cdots (6)$

③, ⑥より

2組の角がそれぞれ等しいから

 $\triangle ADC \circ \triangle BGF$

問2

 $(1)2\sqrt{6}$ cm

$$(2)\frac{7\sqrt{15}}{6}$$
 cm

解説

問 1 同 i*

同じ弧に対する円周角は等しいことと、円の接線は接点を通る半径に垂直であることを利用して 2組の角がそれぞれ等しいことを示す。

問2

(1)

O と E を結ぶ。OB, OE は円 O の半径だから,OB=OE= $10\div2=5$ (cm)

また, OC=OB-BC=5-4=1(cm)

 \triangle OCE は \angle OCE=90°の直角三角形だから、三平方の定理より、CE2=OE2-OC2=52-12=24

CE > 0 だから、 $CE = \sqrt{24} = 2\sqrt{6}$ (cm)

(2)

$$AC = AB - BC = 10 - 4 = 6(cm)$$

円は直径について対称で、AB \perp DE だから CD=CE= $2\sqrt{6}$ cm

 $\triangle ADC$ で、三平方の定理より $AD^2 = AC^2 + CD^2 = 6^2 + (2\sqrt{6})^2 = 60$

AD>0 だから、AD= $\sqrt{60}=2\sqrt{15}$ (cm)

右図のように, Hから AB に垂線 HI をひくと HI // DC

よって、△ADCで、AH:AD=AI:AC…⑦

また、△BGF と△OGB において、

∠BFG=∠OBG=90°, ∠BGF=∠OGB(共通)より

∠GBF=∠GOB

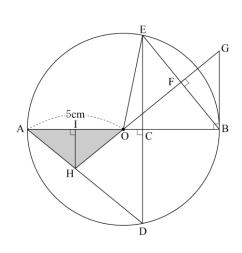
対頂角は等しいから、∠GOB=∠HOA よって、∠GBF=∠HOA

問1より、 ∠GBF=∠HAO よって、∠HOA=∠HAO

△OAH は2つの角が等しいから

OH=AH の二等辺三角形で、
$$AI = \frac{1}{2}AO = \frac{1}{2} \times 5 = \frac{5}{2}$$
(cm)

DH=AD-AH=
$$2\sqrt{15}-\frac{5\sqrt{15}}{6}=\frac{7\sqrt{15}}{6}$$
(cm)



【問 23】

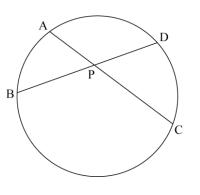
右の図のように、円周上に 4 点 A、B、C、D をとり、線分 AC と BD の交点を P とする。

このとき, 次の各問いに答えなさい。

(沖縄県 2019 年度)

問1 PA: PD=PB: PC であることを次のように証明した。空らんを うめて証明を完成させなさい。

ただし, 証明の中に根拠となることがらを必ず書くこと。



【証明】					
\triangle PAB \land \triangle PDC \land					
BC に対する円周角は等しいから					
$\angle PAB = \angle PDC \cdots \textcircled{1}$					
	2				
①, ②より					
\triangle PAB \circ \triangle PDC	-				
相似である2つの三角形の対応する は等しいから					
PA: PD=PB: PC					

- **問2** 線分 PC の長さは線分 PA の長さの 2 倍である。 PB=6 cm, PD=5 cm のとき, 次の問いに答えなさい。
 - (1) PA: PD=PB: PC を用いて、線分 PA の長さを求めなさい。

¥谷禰 ———	ı			
	△PAB BCに対 ∠PAB			
問 1	相似で	より ∽△PDC ある2つの三角形の対応す D=PB:PC	る […②
BB -	(1)	J 15.10	cm	
問 2	(2)	$\triangle PAB : \triangle PDC =$:	
_) において 角は等しいから		•

 $\angle PAB = \angle PDC \cdots (1)$

対頂角は等しいから

 $\angle APB = \angle DPC \cdots ②$

①, ②より

2組の角がそれぞれ等しいから

 $\triangle PAB \circ \triangle PDC$

相似である2つの三角形の対応する 辺の比 は等しいから

PA : PD = PB : PC

問2

 $(1)\sqrt{15}$ cm

 $(2) \triangle PAB : \triangle PDC = 3 : 5$

解説

問 1

円周角の定理から2組の角がそれぞれ等しいことを示せばよい。

 \triangle PAB と \triangle PDC において、 \widehat{BC} に対する円周角は等しいから \angle PAB= \angle PDC……① 対頂角は等しいから ZAPB = ZDPC ······②

①,②より、2組の角がそれぞれ等しいから $\triangle PAB \hookrightarrow \triangle PDC$

相似である 2 つの三角形の対応する辺の比は等しいから PA: PD=PB: PC

問2

(1)

線分 PA の長さを xcm とすると、PA: PD=PB: PC より、x:5=6:2x $2x^2=30$ $x^2=15$

(2)

 \triangle PAB と \triangle PDC の面積の比は相似比の 2 乗の比だから \triangle PAB : \triangle PDC=($\sqrt{15}$)² : 5²=15 : 25=3 : 5