4. 二次関数と図形関連の複合問題 2017年度出題

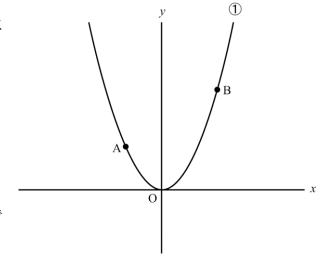
【問1】

右の図のように、関数 $y=ax^2$ (a は正の定数) …① のグラフ上に、2 点 A の x 座標を-2、点 B の x 座標を 3 とします。点 A ひは原点とします。

次の問いに答えなさい。

(北海道 2017年度)

問1 点Aのy座標が16のとき,aの値を求めなさい。



問2 a=2 とします。①について、x の値が 1 から 3 まで増加するときの変化の割合を求めなさい。

問3 点 $A \ge y$ 軸について対称な点を C とします。線分 $AB \ge y$ 軸との交点を D とします。 $\triangle BCD$ の面積が 10 のとき,a の値を求めなさい。

問1	a=	
問2		
問3	〔計 算〕 答 a=	

問1a=4

問28

問3

[計算]

A (-2, 4a), B (3, 9a), C (2, 4a) だから,

$$\triangle ABC$$
 の面積は、 $\frac{1}{2} \times 4 \times 5a = 10a$ …①

AD:DB=2:3 だから,

 $AB:DB=5:3\cdots ②$

よって \triangle ABC の面積: \triangle BCD の面積=5:3 であり

$$\triangle BCD = \frac{3}{5} \triangle ABC = \frac{3}{5} \times 10a = 6a \cdots (3)$$

したがって 6a=10 より

$$a = \frac{5}{3}$$

答
$$a = \frac{5}{3}$$

解説

問1

条件より A(-2, 16)となるから $y=ax^2$ に x=-2, y=16 を代入すると $16=a\times (-2)^2$ 4a=16 a=4 問2

関数 $y=2x^2$ について x の値が 1 から 3 まで増加するとき $y=2\times 1^2=2$, $y=2\times 3^2=18$ だから

xの増加量は3-1=2

yの増加量は18-2=16

よって変化の割合=
$$\frac{(y \odot 増加量)}{(x \odot 増加量)} = \frac{16}{2} = 8$$

問3

 $y=a\times(-2)^2=4a \ \text{LV A}(-2, 4a)$

点 C は点 A と y 軸について対称だから C(2, 4a)

また
$$y=a\times3^2=9a$$
 より B(3, 9a)だから

直線 AB の傾きは
$$\frac{9a-4a}{3-(-2)} = \frac{5a}{5} = a$$

直線 AB の式を y=ax+b として x=3, y=9a を代入すると $9a=a\times 3+b$ b=6a

よって直線 AB の式は y=ax+6a と表されるから D(0, 6a)

$$\triangle BCD = \triangle BAC - \triangle DAC \downarrow \emptyset$$

 \triangle BAC \Diamond DAC の面積をそれぞれ求める。

$$\triangle BAC = \frac{1}{2} \times \{2 - (-2)\} \times (9a - 4a) = \frac{1}{2} \times 4 \times 5a = 10a$$

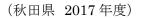
$$\triangle \text{DAC} = \frac{1}{2} \times \{2 - (-2)\} \times (6a - 4a) = \frac{1}{2} \times 4 \times 2a = 4a$$

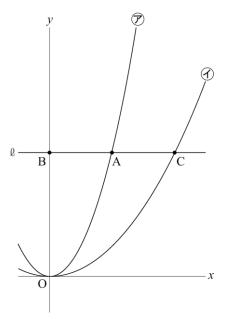
よって
$$\triangle$$
BCD= $10a-4a=6a$ より

$$a = \frac{5}{3}$$

【問 2】

次の図において、⑦は関数 $y=x^2$ 、①は関数 $y=ax^2(a>0)$ のグラフである。点 A は⑦上の点であり、x 座標は 2 である。点 A を通り x 軸に平行な直線を ℓ とする。直線 ℓ とy 軸の交点を B とし、直線 ℓ と⑦の交点のうち、x 座標が正である点を C とする。点 A が線分 BC の中点であるとき、a の値を求めなさい。求める過程も書きなさい。





〔過程〕]					
k+k+						
答	a=					

[過程]

点 A は⑦上の点だから、A(2, 4)である。 3 点 A, B, C は x 軸に平行な直線 ℓ 上にあり点 A が線分 BC の中点だから C(4, 4) となる。点 C は①上の点だから

 $4=a\times4^2$

これを解いて

$$a = \frac{1}{4}$$

答
$$a=\frac{1}{4}$$

解説

点 $A \circ x$ 座標が 2 なので A (2, 4) よって BA の長さは 2 になるから AC の長さも 2 になり

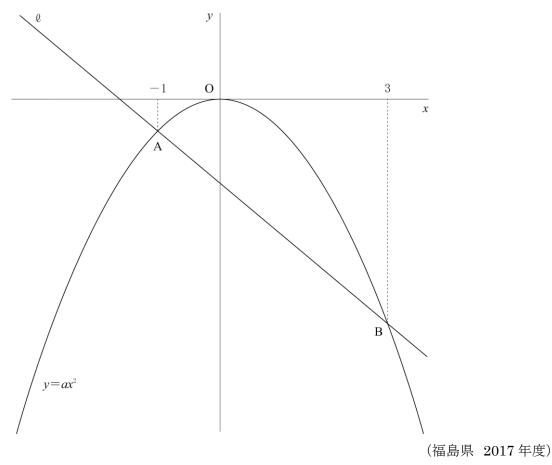
点 C の x 座標が 4 になることがわかる。 また点 C の y 座標は点 A の y 座標と同じなので 4 したがって C(4,4)

これを $y=ax^2$ に代入して整理すると

$$a = \frac{1}{4}$$

【問3】

下の図のように、関数 $y=ax^2$ のグラフと直線 ℓ があり、2 点 A,B で交わっている。 ℓ の式は $y=-x-\frac{3}{2}$ であり,A,B の x 座標はそれぞれ-1,3 である。このとき,次の問1,問2に答えなさい。



問1 αの値を求めなさい。

- 問2 放物線上に点 P をとり, P の x 座標を t とする。ただし、1 < t < 3 とする。また、P を通り x 軸に平行な直線を m とし、m と ℓ との交点を Q とする。さらに、m 上に Q と異なる点 R を、AR = AQ となるようにとる。
 - (1) t=2 のとき, 点 Q の座標を求めなさい。
 - (2) PQ = QR となる t の値を求めなさい。

問1				
問2	(1)	$\mathbf{Q} \; \Big($,)
	(2)			

問
$$1 - \frac{1}{2}$$

問2 (1) Q
$$\left(\frac{1}{2}, -2\right)$$
 (2) $\frac{5}{3}$

解説

問1

点 A は直線 ℓ 上にあり、x 座標は-1 だから

$$y=-x-\frac{3}{2}$$
 に $x=-1$ を代入して $y=-(-1)-\frac{3}{2}=-\frac{1}{2}$ よって $A\left(-1, -\frac{1}{2}\right)$

点 A は関数 $y=ax^2$ のグラフ上にあり、その座標は $\left(-1, -\frac{1}{2}\right)$ だから

$$y=ax^2$$
に $x=-1$, $y=-\frac{1}{2}$ を代入して $-\frac{1}{2}=a\times(-1)^2$ $a=-\frac{1}{2}$

問2

(1)

点 P は関数 $y=-\frac{1}{2}x^2$ のグラフ上にあり、その x 座標は 2 だから

$$y = -\frac{1}{2}x^2$$
 に $x = 2$ を代入して $y = -\frac{1}{2} \times 2^2 = -2$

よって P(2, −2)

直線 m は、点 P を通り x 軸に平行だから、直線 m の式は y=-2 となる。

点 \mathbf{Q} は直線 m と直線 ℓ との交点だから y=-2 と $y=-x-\frac{3}{2}$ を連立方程式として解くと $x=\frac{1}{2}$, y=-2

したがって
$$\mathrm{Q}\!\left(rac{1}{2}, -2
ight)$$

(2)

 \mathbf{P} の x 座標を t とおくと, $\mathbf{P}\left(t, -\frac{1}{2}t^2\right)$ 直線 m の式は $y=-\frac{1}{2}t^2$ と表されるから

$$-\frac{1}{2}t^2 = -x - \frac{3}{2}$$
を x について解くと, $x = \frac{1}{2}t^2 - \frac{3}{2}$

よって
$$Q\left(\frac{1}{2}t^2 - \frac{3}{2}, -\frac{1}{2}t^2\right)$$

$$PQ = t - \left(\frac{1}{2}t^2 - \frac{3}{2}\right) = -\frac{1}{2}t^2 + t + \frac{3}{2}$$

AR=AQより、点Aは線分QRの垂直二等分線上にある。

線分 QR の垂直二等分線と直線 m との交点を S とすると, $S\left(-1, -\frac{1}{2}t^2\right)$

QS=RS
$$\sharp \emptyset$$
, QR=2QS=2 $\left\{\frac{1}{2}t^2 - \frac{3}{2} - (-1)\right\} = t^2 - 1$

PQ=QR Ly,
$$-\frac{1}{2}t^2+t+\frac{3}{2}=t^2-1$$
 $-t^2+2t+3=2t^2-2$ $-3t^2+2t+5=0$ $3t^2-2t-5=0$

解の公式より
$$t = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times 3 \times (-5)}}{2 \times 3} = \frac{2 \pm \sqrt{64}}{6} = \frac{2 \pm 8}{6}$$

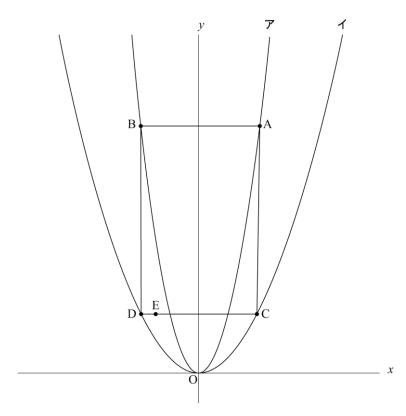
$$\frac{2+8}{6} = \frac{10}{6} = \frac{5}{3}$$
, $\frac{2-8}{6} = -\frac{6}{6} = -1$ £9 $t = \frac{5}{3}$, -1

1 < t < 3 より $t = \frac{5}{3}$ は問題にあっているが t = -1 は問題にあっていない。

したがって
$$t=\frac{5}{3}$$

【問4】

下の図において、曲線アは関数 $y=2x^2$ のグラフであり、曲線イは関数 $y=\frac{1}{2}x^2$ のグラフである。曲線ア上 の点で x 座標が 2、-2 である点をそれぞれ A、B とし、曲線イ上の点で x 座標が 2、-2 である点をそれぞれ C、D とする。また、線分 CD 上の点を E とする。このとき、次の間 1、間 2 に答えなさい。ただし、D は原点とする。



(茨城県 2017年度)

問1 2 点 A, D を通る直線の式を求めなさい。

問2 \triangle ACE の面積が四角形 ABDC の面積の $\frac{2}{5}$ 倍であるとき, 点 E の座標を求めなさい。

問1	y=
問2	

問1
$$y = \frac{3}{2}x + 5$$

問2
$$\left(-\frac{6}{5}, 2\right)$$

解説

問1

$$y=2\times 2^2=8 \, \text{L}^{1/2}$$
, A(2, 8) $y=\frac{1}{2}\times (-2)^2=2 \, \text{L}^{1/2}$ D(-2, 2)

$$2$$
 点 A, D を通る直線の傾きは $\frac{8-2}{2-(-2)} = \frac{6}{4} = \frac{3}{2}$

求める直線の式を
$$y = \frac{3}{2}x + b$$
として

$$x=2, y=8$$
 を代入すると $8=\frac{3}{2}\times 2+b$ $b=5$

よって
$$y = \frac{3}{2}x + 5$$

問2

$$y=2\times(-2)^2=8$$
 \$\(\text{J}\) B(-2, 8) $y=\frac{1}{2}\times 2^2=2$ \$\(\text{L}\) C(2, 2)

四角形 ABDC は長方形で、縦の長さが 8-2=6、横の長さが 2-(-2)=4 だからその面積は $6\times 4=24$

 \triangle ACE の面積が四角形 ABDC の面積の $\frac{2}{5}$ 倍であるから, CE=t とすると

$$\frac{1}{2} \times t \times 6 = 24 \times \frac{2}{5}$$

$$3t = \frac{48}{5}$$

$$t = \frac{16}{5}$$

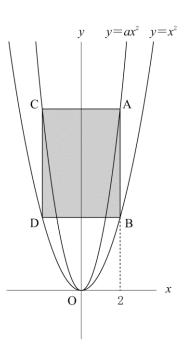
よって点
$$\mathbb{E}$$
 の x 座標は $2-\frac{16}{5}=-\frac{6}{5}$

点
$$\mathbf{E}$$
 の \mathbf{y} 座標は $\mathbf{2}$ だから $\mathbf{E}\left(-\frac{6}{5}, 2\right)$

【問5】

右の図のように、2つの関数 $y=ax^2$ (a>1)、 $y=x^2$ のグラフ上で、x座標が 2である点をそれぞれ A、B とする。また、点 A を通り x 軸に平行な直線が、関数 $y=ax^2$ のグラフと交わる点のうち、点 A と異なる点を C とし、点 B を通り x 軸に平行な直線が、関数 $y=x^2$ のグラフと交わる点のうち、点 B と異なる点を D とする。長 方形 ACDB の面積が 24 であるとき、a の値を求めなさい。

(栃木県 2017年度)



解答欄

a=

解答

 $a = \frac{5}{2}$

解説

条件から, 点 A の y 座標と点 C の y 座標は等しくなり, この 2 点は y 軸について対称である。 よって, 点 A の x 座標と点 C の x 座標の絶対値は等しい。

点 A の x 座標は 2 だから,点 A の y 座標は, $y=ax^2$ に x=2 を代入して $y=a\times 2^2=4a$ A(2, 4a)より C(-2, 4a)

同様に、点 \mathbf{B} の y 座標と点 \mathbf{D} の y 座標は等しくなり、この $\mathbf{2}$ 点は y 軸について対称である。 よって点 \mathbf{B} の x 座標と点 \mathbf{D} の x 座標の絶対値は等しい。

点 B の x 座標は 2 だから, 点 B の y 座標は, $y=x^2$ に x=2 を代入して $y=2^2=4$ B(2, 4)より D(-2, 4)

長方形 ACDB の縦の長さは 4a-4,横の長さは 2-(-2)=4 であり,その面積は 24 だから $(4a-4)\times 4=24$

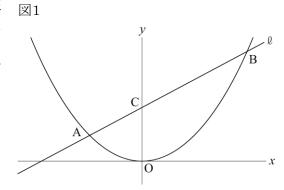
整理をすると $a=\frac{5}{2}$

【問6】

右の図1で、曲線は関数 $y=ax^2$ のグラフです。曲線上に x 座標が-2、4 である 2 点 A、B をとり、この 2 点を通る直線 ℓ をひきます。直線 ℓ が y 軸と点 C (0, 2) で交わるとき、次の各間に答えなさい。ただし、座標軸の単位の長さを 1 cm とします。

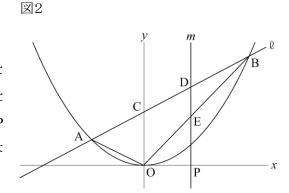
(埼玉県 2017年度)

問1 △OBC の面積を求めなさい。



問2 a の値を求めなさい。

問3 右の図2のように、x軸上の $0 \le x \le 4$ の範囲に点 P をとり、点 P を通って y 軸に平行な直線 m をひきます。直線 m と 直線 ℓ との交点を D、直線 m と線分 OB との交点を E と します。 $\triangle OAB$ と $\triangle BDE$ の面積の比が 4:1 のとき、点 P の x 座標を途中の説明も書いて求めなさい。その際、解答 用紙の図を用いて説明してもよいものとします。



問1		cm^2	
問2	a=		
問3	[説明]	${ m cm}^3$	

問1 4cm²

問2 $a = \frac{1}{4}$

間3

〔説明〕

点Bから直線mに垂線をひき,交点をFとする。

BF=h とすると、 $\triangle BDE \circ \triangle BCO$ であるから、面積比と高さの比の関係より

 $\triangle BDE : \triangle BCO = h^2 : 4^2 \cdots \bigcirc$

また, $\triangle OAB$: $\triangle BDE = 4:1$ で, $\triangle OAB = 6$ であるから

6:△BDE=4:1

$$\triangle BDE = \frac{3}{2}$$

よって(1)は

$$\frac{3}{2}:4=h^2:4^2$$

$$4h^2 = 24$$

h>0 より

$$h = \sqrt{6}$$

したがって点 P o x 座標は $4-\sqrt{6}$

答え $4-\sqrt{6}$

解説

問1

 \triangle OBC の底辺を CO とすると、高さは、点 B の x 座標より 4 cm となる。

$$C(0, 2)$$
 より、 $CO=2$ cm だから、 $\triangle OBC$ の面積は $\frac{1}{2} \times 2 \times 4 = 4$ cm²

問2

$$y=a\times(-2)^2=4a$$
 より A(-2, 4a) $y=a\times 4^2=16a$ より B(4, 16a) また C(0, 2)

直線 AC の傾きは
$$\frac{2-4a}{0-(-2)} = \frac{2-4a}{2} = 1-2a$$

直線 CB の傾きは
$$\frac{16a-2}{4-0} = \frac{16a-2}{4} = 4a - \frac{1}{2}$$

直線 AC と直線 CB はともに直線 ℓ に一致するから、直線 AC と直線 CB の傾きは等しくなる。

よって
$$1-2a=4a-\frac{1}{2}$$

$$-6a = -\frac{3}{2}$$

$$a = \frac{1}{4}$$

間3

点 B を通り直線 m に垂直な直線と直線 m, y 軸との交点をそれぞれ F, G とし BF=h cm とする。 直線 m と y 軸は平行で BG=4 cm だから BD:BC=BF:BG=h:4

 $\triangle BDE$ $\triangle BCO$ で、相似比は BD:BC=h:4 だから、面積の比は $h^2:4^2=h^2:16$

$$\triangle OAB = \triangle OAC + \triangle OBC = \frac{1}{2} \times 2 \times 2 + 4 = 2 + 4 = 6$$
cm² だから $\triangle OAB : \triangle BDE = 4:1$ より

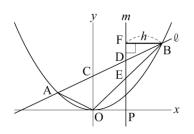
△BDE=
$$S \text{ cm}^2$$
とすると 6: S =4:1 4 S =6 S = $\frac{3}{2}$

よって、問1より \triangle OBC=4 cm² であり \triangle BDE: \triangle BCO= h^2 : 16 だから

$$\frac{3}{9}:4=h^2:16$$
 $4h^2=24$ $h^2=6$ $h>0$ $\downarrow 0$, $h=\sqrt{6}$

$$FG=BG-BF=4-\sqrt{6}$$
 cm だから

点 P O x 座標は $4-\sqrt{6}$



【問7】

右の図1で、曲線は関数 $y=ax^2$ のグラフです。曲線上に x 座標が-2、4 である 2 点 A, B をとり、この 2 点を通る直線 ℓ をひきます。直線 ℓ が y 軸と点 C (0, 2) で交わるとき、次の各間に答えなさい。

ただし、座標軸の単位の長さを $1\,\mathrm{cm}$ とし、円周率は π とします。 (埼玉県 $2017\,\mathrm{年度}$)

問1 a の値を求めなさい。

問2 右の図2のように、x軸上の $0 \le x \le 4$ の範囲に点 P をとり、 点 P を通って y 軸に平行な直線 m をひきます。直線 m と 直線 ℓ との交点を D、直線 m と線分 OB との交点を E と します。

 \triangle OAB $\ge \triangle$ BDE の面積の比が 4:1 のとき, 次の(1), (2) に答えなさい。

(1) 点 P O x 座標を求めなさい。

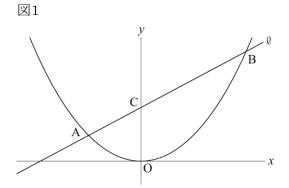
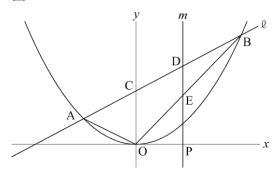


図2



(2) \triangle BDE を ,辺 BE を 軸として 1 回転させてできる立体の体積を,途中の説明も書いて求めなさい。その際,解答用紙の図を用いて説明してもよいものとします。

問1	($=$ μ	
	(1)		
問2	(2)	答え	

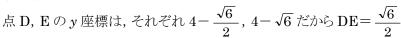
問1
$$a = \frac{1}{4}$$

問2

(1)
$$4 - \sqrt{6}$$

(2)

〔説明〕



また, 点 D から辺 BE に垂線をひき, 交点を F とすると

△DEF は DF=EF の直角二等辺三角形だから

$$DF = \frac{DE}{\sqrt{2}} = \frac{\sqrt{3}}{2}$$

△BDE を1回転させてできる立体は

 DF を半径とする円を共通の底面にもつ円錐を 2 つ合わせたものだから 求める体積 V は

$$V = \frac{1}{3} \times \pi \times DF^2 \times (EF + FB)$$

$$= \frac{\pi}{3} \times DF^2 \times EB$$

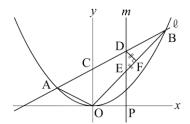
ここで, 点 B, E の x 座標は, それぞれ 4, $4-\sqrt{6}$ だから

$$EB = \sqrt{6} \times \sqrt{2} = 2\sqrt{3}$$

よって

$$V \!=\! \frac{\pi}{3} \times \! \left(\! \frac{\sqrt{3}}{2} \right)^{\! 2} \times 2\sqrt{3} = \! \frac{\sqrt{3}}{2} \ \pi$$

答之
$$\frac{\sqrt{3}}{2}$$
 π cm³



解説

問1

$$y=a\times(-2)^2=4a$$
 より A(-2, 4a) $y=a\times4^2=16a$ より B(4, 16a) また C(0, 2)

直線 AC の傾きは
$$\frac{2-4a}{0-(-2)} = \frac{2-4a}{2} = 1-2a$$

直線 CB の傾きは
$$\frac{16a-2}{4-0} = \frac{16a-2}{4} = 4a - \frac{1}{2}$$

直線 AC と直線 CB はともに直線 ℓ に一致するから、直線 AC と直線 CB の傾きは等しくなる。

よって
$$1-2a=4a-\frac{1}{2}$$

$$-6a = -\frac{3}{2}$$

$$a = \frac{1}{4}$$

問2

(1)

点 B を通り直線 m に垂直な直線と直線 m, y 軸との交点をそれぞれ H, I とし BH=h cm とする。 直線 m と y 軸は平行で BI=4 cm だから BH:BC=BF:BI=h:4

△BDE∽△BCOで

相似比は BD:BC=h:4 だから

面積の比は $h^2:4^2=h^2:16$

$$\triangle OAB = \triangle OAC + \triangle OBC = \frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 2 \times 4 = 2 + 4 = 6 \text{cm}^2$$
 だから

$$\triangle BDE = S \text{ cm}^2$$

6:S=4:1

4S = 6

$$S = \frac{3}{2}$$

よって \triangle OBC=4 cm 2 であり、 \triangle BDE: \triangle BCO= h^2 :16 だから

$$\frac{3}{2}:4=h^2:16$$

$$4h^2 = 24$$

$$h^2 = 6$$

h>0 $\downarrow b$

 $h=\sqrt{6}$

 $HI=BI-BH=4-\sqrt{6}$ cm だから

点 P O x 座標は $4-\sqrt{6}$

(2)

点Dから辺BEに垂線をひき、その交点をFとすると

求める立体の体積は、DFを半径とする円を底面とした高さ EFと FBの円錐を合わせたものになる。

まず, (1)より, 点 D, E の
$$y$$
 座標を求めると, それぞれ $4-\frac{\sqrt{6}}{2}$, $4-\sqrt{6}$ となるから

 \triangle OPE は、OP= $4-\sqrt{6}$ cm、PE= $4-\sqrt{6}$ cm、 \angle EPO=90の直角二等辺三角形とわかる。 \angle OEP=45\$り、 \angle DEF=45\$となるから、 \triangle FEDも直角二等辺三角形とわかる。

ここで
$$DE = \left(4 - \frac{\sqrt{6}}{2}\right) - (4 - \sqrt{6}) = \frac{\sqrt{6}}{2} \text{ cm}$$
 だから $DF = \frac{DE}{\sqrt{2}} = \frac{\sqrt{3}}{2} \text{ cm}$

また、2 つの円錐の高さの和は、EF+FB=EB で、EB は、 $E(4-\sqrt{6},4-\sqrt{6})$ 、B(4,4) より 2 辺の長さが $\sqrt{6}$ cm の直角二等辺三角形の斜辺の長さになるから $\sqrt{6}$ × $\sqrt{2}=2\sqrt{3}$ cm

したがって求める立体の体積は
$$\frac{1}{3} \times \pi \times \left(\frac{\sqrt{3}}{2}\right)^2 \times 2\sqrt{3} = \frac{\sqrt{3}}{2} \pi \text{cm}^3$$

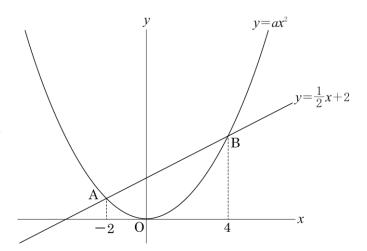
【問8】

下の図のように、関数 $y=ax^2$ のグラフと直線 $y=\frac{1}{2}x+2$ が、2 点 A,B で交わっている。

2 点 A, B の x 座標が、それぞれ-2, 4 であるとき、次の問 $1\sim$ 問3に答えなさい。ただし、a>0とする。

また, 原点 O から点 (1,0) までの距離及び原点 O から点 (0,1) までの距離をそれぞれ 1 cm とする。 (千葉県 2017 年度 前期)

問1 a の値を求めなさい。



問2 △OABの面積を求めなさい。

問3 原点 O から直線 $y=\frac{1}{2}x+2$ に垂線 OH をひくとき、線分 AH と線分 HB の長さの比を最も簡単な整数の比で表しなさい。

図1

問1	a=
問2	$ m cm^2$
問3	

問1
$$a = \frac{1}{4}$$

問2 6cm²

問3 1:4

解説

問1

$$y = \frac{1}{2} \times 4 + 2 = 4$$
 より B(4, 4)だから $4 = a \times 4^2$ $a = \frac{1}{4}$

問2

直線
$$y = \frac{1}{2}x + 2 \ge y$$
 軸との交点を C とする。

$$C(0, 2)$$
 だから $\triangle OAB = \triangle OAC + \triangle OBC = \frac{1}{2} \times 2 \times 2 + \frac{1}{2} \times 2 \times 4 = 6cm^2$

問3

線分 OH は \triangle OAB の底辺を AB としたときの高さになる。

AB の長さを求めると
$$y = \frac{1}{2} \times (-2) + 2 = 1$$
 より A(-2, 1) だから

$$AB^2 = \{4 - (-2)\}^2 + (4 - 1)^2 = 45$$
 $AB > 0$ Ly $AB = 3\sqrt{5}$ cm

ここで
$$\triangle OAB = 6 \text{ cm}^2$$
だから $\frac{1}{2} \times 3\sqrt{5} \times OH = 6 \text{ OH} = \frac{4\sqrt{5}}{5} \text{ cm}$

また、
$$OB^2 = 4^2 + 4^2 = 32$$
 で $OB > 0$ より $OB = 4\sqrt{2}$ cm となるから

$$\triangle$$
OBH において、三平方の定理より HB²= $(4\sqrt{2}\)^2-\left(\frac{4\sqrt{5}}{5}\right)^2=32-\frac{16}{5}=\frac{144}{5}$

よって HB>0 より HB=
$$\frac{12\sqrt{5}}{5}$$
 cm

したがって
$$AH = AB - HB = 3\sqrt{5} - \frac{12\sqrt{5}}{5} = \frac{3\sqrt{5}}{5}$$
 cm より

AH:HB=
$$\frac{3\sqrt{5}}{5}:\frac{12\sqrt{5}}{5}=1:4$$

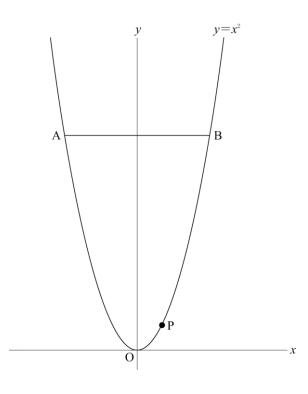
【問9】

下の図のように、関数 $y=x^2$ のグラフ上に、3 点 A、B、P を とる。点 A の x 座標は負、点 B の x 座標は正で、点 P の x 座標は 0 より大きく点 B の x 座標より小さい。線分 AB は x 軸に平行で、AB=6 のとき、次の問1~問3に答えなさい。

(千葉県 2017年度 後期)

問1 点 B の座標を求めなさい。

問2 点 $P \circ x$ 座標が 1 のとき、2 点 A, P を通る直線の式を求めなさい。



問3 \triangle OAB \Diamond PAB の面積比が 4:3 になるとき, 2 点 A, P を通る直線が x 軸と交わる点の座標を求めなさい。

問1	,	
問2		
問3	,	

問1 (3, 9)

問2 y = -2x + 3

問3 (3,0)

解説

問1

条件から、点 A と点 B は、y 軸について対称であり、点 A の x 座標と点 B の x 座標の絶対値は等しい。 AB=6 より、点 B の x 座標は、 $6\div2=3$ 点 B の y 座標は、 $y=x^2$ に x=3 を代入して $y=3^2=9$

よって B(3, 9)

問2

問1より B(3, 9)だから、A(-3, 9) $y=x^2$ に x=1 を代入して $y=1^2=1$ よって P(1, 1)

2 点 A, P を通る直線の傾きは $\frac{1-9}{1-(-3)}=-2$

求める直線の式を y=-2x+b として x=1, y=1 を代入すると $1=-2\times 1+b$ b=3 よって y=-2x+3

間3

 \triangle OAB と \triangle PAB の共通する辺 AB を底辺とすると、高さの比が面積比と等しくなる。

 $\triangle {
m OAB}$ の高さが 9 だから $\triangle {
m PAB}$ の高さは $9 imes {3\over 4} = {27\over 4}$

よって, 点 P の y 座標は $9-\frac{27}{4}=\frac{9}{4}$

点 P の x 座標は、 $y=x^2$ に $y=\frac{9}{4}$ を代入して、 $\frac{9}{4}=x^2$ 0 < x < 3 だから $x=\frac{3}{2}$

よって $P\left(\frac{3}{2}, \frac{9}{4}\right)$

2 点 A, P を通る直線の傾きは $\left(\frac{9}{4} - 9\right) \div \left\{\frac{3}{2} - (-3)\right\} = -\frac{3}{2}$ だから

この直線の式を $y=-\frac{3}{2}x+c$ としてx=-3, y=9を代入すると $9=-\frac{3}{2}\times(-3)+c$ $c=\frac{9}{2}$

 $y=-\frac{3}{2}x+\frac{9}{2}$ に y=0 を代入して $0=-\frac{3}{2}x+\frac{9}{2}$ x=3

よって求める点の座標は(3,0)

【問 10】

右の図において,直線①は関数 y=x のグラフ,直線 ②は関数 y=-x+2 のグラフであり、曲線③は関数 $y=ax^2$ のグラフである。 点 A は直線①と曲線③との交点 で、そのx座標は2である。点Bは曲線③上の点で、線 点 C は直線①上の点で、AO:OC=2:3 であり、その x座標は負である。さらに、点 D は直線①と直線②との交 点であり、点 E は直線②上の点で、その x 座標は 3 であ る。

このとき,次の問いに答えなさい。

(神奈川県 2017年度)

問1 曲線③の式 $y=ax^2$ のaの値として正しいものを次の1~6の中から1つ選び、その番号を答えなさい。

$$1 \ a = \frac{1}{4}$$
 $2 \ a = \frac{1}{3}$ $3 \ a = \frac{2}{5}$

$$2 a = \frac{1}{3}$$

$$3 a = \frac{2}{5}$$

$$4 \ a = \frac{1}{2}$$
 $5 \ a = \frac{2}{3}$ $6 \ a = \frac{3}{4}$

$$5 a = \frac{2}{3}$$

6
$$a = \frac{3}{4}$$

問2 直線 BC の式として正しいものを次の1~6の中から1つ選び、その番号を答えなさい。

$$1 v = 4x + 10$$

$$1 y=4x+10$$
 $2 y=4x+12$ $3 y=4x+14$

$$y = 4x + 14$$

$$4 v = 5x + 10$$

$$4 y = 5x + 10$$
 $5 y = 5x + 12$ $6 y = 5x + 14$

$$6 v = 5x + 14$$

問3 点 F は線分 CE 上の点である。直線 DF が三角形 ACE の面積を 2 等分するとき、点 F の x 座標として正 しいものを次の1~6の中から1つ選び、その番号を答えなさい。

$$1 \frac{5}{7}$$

$$1 \frac{5}{7}$$
 $2 \frac{8}{11}$ $3 \frac{3}{4}$

$$3 \frac{3}{4}$$

$$4 \frac{10}{13}$$
 $5 \frac{7}{9}$ $6 \frac{4}{5}$

$$5 \frac{7}{9}$$

$$6 - \frac{4}{5}$$

問1	
問2	
問3	

```
解答
```

問1 4

問2 5

問3 3

解説

問1

点 A は直線①y=x 上の点で x=2 より A(2, 2)

点 A は曲線③
$$y=ax^2$$
上の点でもあるので $2=a\times 2^2$ $4a=2$ $a=\frac{1}{2}$

問2

点 A と点 B は y 軸について対称だから B(-2, 2)

点 C は直線①y=x 上の点で、AO:OC=2:3、A(2,2)だからC(-3,-3)

直線 BC の傾きは
$$\frac{2-(-3)}{-2-(-3)}=5$$

直線 BC の式を y=5x+b として, x=-2, y=2 を代入すると $2=5\times (-2)+b$ b=12 よって, 直線 BC の式は y=5x+12

間3

y=xとy=-x+2を連立方程式として解くとx=1, y=1 だから D(1, 1)

点 E は直線②y=-x+2 上の点で x 座標が 3 だから y=-3+2=-1 より E(3,-1)

点 \mathbf{E} を通り x 軸に平行な直線と直線 $\mathbf{U}_y = x$ との交点を \mathbf{G} とすると $\mathbf{G}(-1, -1)$

 $\triangle ACE = \triangle AGE + \triangle CGE$

$$= \frac{1}{2} \times \{3 - (-1)\} \times \{2 - (-1)\} + \frac{1}{2} \times \{3 - (-1)\} \times \{-1 - (-3)\}$$
$$= \frac{1}{2} \times 4 \times 3 + \frac{1}{2} \times 4 \times 2$$

=10

直線 DF は \triangle ACE の面積を 2 等分するから \triangle DCF= $10\div2=5$ y 軸上に DC // FH となる点 H をとると \triangle DCH= \triangle DCF=5

$$OH = h$$
 とすると $\triangle DCH = \triangle DOH + \triangle COH = \frac{1}{2} \times h \times 1 + \frac{1}{2} \times h \times 3 = 2h$

よって
$$2h=5$$
 $h=\frac{5}{2}$ だから

$$H\left(0, -\frac{5}{2}\right)$$
より,直線 FH の式は $y=x-\frac{5}{2}$

直線 CE の傾きは
$$\frac{-1-(-3)}{3-(-3)} = \frac{1}{3}$$

直線 CE の式を
$$y = \frac{1}{3}x + c$$
 として $x = 3$, $y = -1$ を代入すると $-1 = \frac{1}{3} \times 3 + c$ $c = -2$

よって直線 CE の式は
$$y = \frac{1}{3}x-2$$

$$y=x-\frac{5}{2}$$
と $y=\frac{1}{3}x-2$ を連立方程式として解くと

$$x = \frac{3}{4}, y = -\frac{7}{4}$$
 this

点
$$F O x$$
 座標は $\frac{3}{4}$

【問 11】

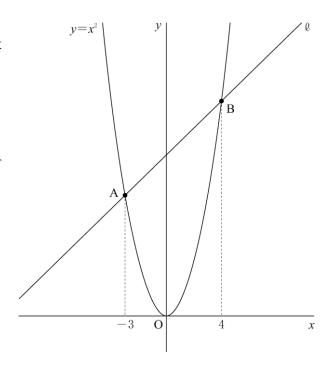
右の図のように、関数 $y=x^2$ のグラフと直線 ℓ が 2 点 A, B で交わっている。点 A の x 座標は-3,点 B の x 座標は 4 である。

このとき,次の問いに答えなさい。

(富山県 2017年度)

問1 関数 $y=x^2$ について、x の値が 3 から 5 まで増加するときの変化の割合を求めなさい。

問2 直線ℓの式を求めなさい。



問3 △OABの面積を求めなさい。

問1	
問2	
問3	

問1 8

問2 y=x+12

問3 42

解説

問1

変化の割合=
$$\frac{y$$
の増加量 だから $\frac{5^2-3^2}{5-3}$ =8

問2

点 A, B ともに $y=x^2$ 上の点だから, それぞれの座標を求めると A(-3, 9), B(4, 16)

よって直線
$$\ell$$
 の傾きは $\frac{16-9}{4-(-3)}=1$

直線 ℓ の式を y=x+b とおくと A(-3,9) を通るから 9=(-3)+b b=12

よって
$$y=x+12$$

問3

直線 ℓ と y 軸の交点を C とおくと C(0, 12)

よって
$$\triangle OAB = \triangle AOC + \triangle COB = \frac{1}{2} \times 12 \times 3 + \frac{1}{2} \times 12 \times 4 = 42$$

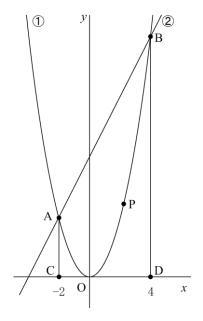
【問 12】

右の図において、①は関数 $y=x^2$ 、②は関数 y=2x+8 のグラフである。2 点 A,B は①と②の交点で、x 座標はそれぞれ-2 と 4 である。点 A,B から x 軸に 垂線をひき、x 軸との交点をそれぞれ C,D とする。また、点 P は①のグラフ上を A から B まで動く。

このとき、次の問1~問3に答えなさい。

(石川県 2017年度)

問1 点 Pの y 座標のとる値の範囲を,不等号を用いて表しなさい。



問2 点 $P \circ x$ 座標が正のとき, 点 P を通り, y 軸に平行な直線をひき, ②のグラフとの交点を Q とする。直線 CQ と直線 OP が平行となるような点 P の座標を求めなさい。なお、途中の計算も書くこと。

問3 \angle ACD の二等分線と直線 AO との交点を S とするとき, \triangle CDS の面積を求めなさい。なお,途中の計算も 書くこと。

問1		
問2	答答	
問3	答	

```
解答
```

問1 0≦y≦16

問2

[計算]

点 $P \mathcal{O} x$ 座標を t (t>0) とすると $P (t, t^2)$, Q (t, 2t+8)

直線 CQ と直線 OP が平行より
$$\frac{2t+8}{t-(-2)} = \frac{t^2}{t}$$

これを解いて $t^2=8$ より $t=\pm 2\sqrt{2}$

t>0 より

 $t=2\sqrt{2}$

答 $(2\sqrt{2}, 8)$

間3

〔計算〕

 \angle ACD の二等分線は、傾きが 1 で(-2, 0) を通るので y=x+2 となる。

また, 直線 AO の式は y=-2x より

交点 S について x+2=-2x

これを解いて
$$x=-\frac{2}{3}$$
 より y 座標は $\frac{4}{3}$

したがって
$$\triangle$$
CDS の面積は $\frac{1}{2} \times 6 \times \frac{4}{3} = 4$

答 4

解説

問1

点 P は A から B まで動くので x の変域が $-2 \le x \le 4$ のときの y の変域を求めればよい。

変域に 0 を含むので y の値が最小となるのは x=0 のときで y=0

yの値が最大となるのは-2と4で絶対値の大きいx=4のときで $y=4^2=16$

よってyの変域は $0 \le y \le 16$

問2

点 P の x 座標を $p(0 とすると, <math>P(p, p^2)$, Q(p, 2p+8)

$$C(-2, 0)$$
 より直線 CQ の傾きは $\frac{2p+8-0}{p-(-2)} = \frac{2p+8}{p+2}$

直線 OP の傾きは、 $\frac{p^2-0}{p-0}=p$

平行な2直線の傾きは等しいから

$$\frac{2p+8}{p+2} = p$$
 整理すると $p = \pm 2\sqrt{2}$ 0< $p \le 4$ より $p = 2\sqrt{2}$

よって $(2\sqrt{2})^2 = 8$ より $P(2\sqrt{2}, 8)$

問3

 \angle ACD の二等分線とy 軸との交点を E とすると \angle ACD=90°より \triangle ECO は直角二等辺三角形になる。

よって
$$CO = OE$$
 だから $\frac{OE}{CO} = 1$ より $\angle ACD$ の二等分線の傾きは 1 である。

 $\angle ACD$ の二等分線は、点 C(-2,0) を通るから y=x+b に x=-2, y=0 を代入して

0=-2+b b=2 $\angle ACD$ の二等分線の式は y=x+2

点 A は関数 $y=x^2$ のグラフ上にあり、その x 座標は-2 だから

 $y=x^2$ に x=-2 を代入して $y=(-2)^2=4$ よって A(-2, 4)

直線 AO の式を y=ax として x=-2, y=4 を代入すると $4=a\times(-2)$ a=-2

よって
$$y=-2x$$
 $y=x+2$ と $y=-2x$ を連立方程式として解くと $x=-\frac{2}{3}$, $y=\frac{4}{3}$ だから

$$S\left(-\frac{2}{3}, \frac{4}{3}\right)$$

$$C(-2, 0), D(4, 0) \ \ \ \ \ \ \ \ \ \ CD = 4 - (-2) = 6$$

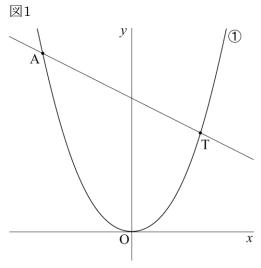
$$\triangle CDS$$
 の面積は $\frac{1}{2} \times 6 \times \frac{4}{3} = 4$

【問 13】

下の図1, 2において, ①は関数 $y=\frac{1}{2}x^2$ のグラフである。 点 A, T は①上の点で, 点 A の座標は(-4,8), 点 T の x 座標は 3 である。このとき, 次の問1~問4に答えなさい。

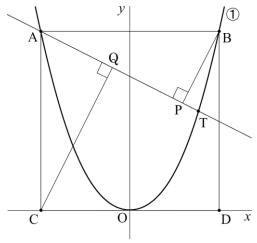
(山梨県 2017年度)

問1 点Tのy座標を求めなさい。



問2 ①の関数 $y=\frac{1}{2}x^2$ において, x の変域が $-4 \le x \le 3$ である とき, y の変域を求めなさい。

図2



問3 直線 AT の式を求めなさい。

問4 図2において、点Bは①上の点であり、線分ABはx軸に平行である。また、点A,Bからx軸に垂線をひき、その交点をそれぞれC,Dとすると、四角形ACDBは正方形となる。さらに、点B,Cから直線ATに垂線をひき、その交点をそれぞれD,Dとする。

このとき, 次の(1), (2)に答えなさい。

- (1) $\triangle ACQ \equiv \triangle BAP$ を証明しなさい。
- (2) 線分 PQ の長さを求めなさい。

問1	Ĉ	y=	
問2			
問3	Ĉ	y=	
問4	(1)	〔証明〕	
	(2)		

問1
$$y = \frac{9}{2}$$

問2
$$0 \le y \le 8$$

問3
$$y = -\frac{1}{2}x + 6$$

問4

(1)

〔証明〕

 $\triangle ACQ$ と $\triangle BAP$ において

仮定より

$$\angle AQC = \angle BPA = 90^{\circ} \cdots \textcircled{1}$$

正方形の辺はすべて等しいから

 $AC = BA \cdots ②$

三角形の内角の和は 180° だから

$$\angle ACQ + \angle CAQ + 90^{\circ} = 180^{\circ}$$

$$\angle ACQ = 90^{\circ} - \angle CAQ \cdots 3$$

正方形の1つの内角は90°だから

$$\angle BAP = 90^{\circ} - \angle CAQ \cdots \textcircled{4}$$

3, 4 \$\psi\$

$$\angle ACQ = \angle BAP \cdots \textcircled{5}$$

①, ②, ⑤より, 直角三角形の斜辺と1つの鋭角がそれぞれ等しいから

$$\triangle ACQ \equiv \triangle BAP$$

(2)
$$\frac{8\sqrt{5}}{5}$$

解説

問1

点 T は関数 $y=\frac{1}{2}x^2$ のグラフ上にあり、その x 座標は 3 だから $y=\frac{1}{2}\times 3^2=\frac{9}{2}$

間2

xの変域に0を含むのでyの値が最小となるのはx=0のときでy=0

y の値が最大となるのは-4 と3 で絶対値の大きい x=-4 のときで $y=\frac{1}{2}\times (-4)^2=8$

よってyの変域は $0 \le y \le 8$

間3

$$A(-4, 8)$$
, $T(3, \frac{9}{2})$ より, 直線 AT の傾きは $\left(\frac{9}{2}-8\right)$ ÷ $\{3-(-4)\}$ = $-\frac{7}{2}$ ÷ 7 = $-\frac{1}{2}$

直線 AT の式を $y=-\frac{1}{2}x+b$ として x=-4, y=8 を代入すると $8=-\frac{1}{2}\times(-4)+b$ b=6

よって求める式は
$$y=-\frac{1}{2}x+6$$

問4

(1)

 $\angle AQC = \angle BPA = 90^{\circ}$ より $\triangle ACQ$ と $\triangle BAP$ が直角三角形であることがわかる。

四角形 ACDB は正方形だから AC=BA となり、斜辺が等しいことが導かれるので、

他の1辺か1つの鋭角が等しくなれば合同が証明できる。

ここで $\angle ACQ + \angle CAQ + 90^\circ = 180^\circ$, $\angle BAP = \angle BAC - \angle CAQ$ より $\angle ACQ = \angle BAP$ がわかるので 1 つの鋭角が等しいことが導ける。

(2)

条件から, 点 A の y 座標と点 B の y 座標は等しくなり, この 2 点は y 軸について対称である。 よって点 A の x 座標と点 B の x 座標の絶対値は等しく A(-4,8) より B(4,8) 直線 AT と辺 BD の交点を R とする。

点 R の x 座標は 4 だから $y=-\frac{1}{2}x+6$ に x=4 を代入して $y=-\frac{1}{2}\times 4+6=4$ より R(4, 4)

 \triangle ABR において、三平方の定理より AR²=AB²+BR²= $\{4-(-4)\}^2+(8-4)^2=80$

 $AR > 0 \ \text{L}^{y} AR = 4 \sqrt{5}$

ここで、AP=pとすると

△RAB ∽ △BAP より AR: AB=AB: AP が成り立ち

 $4\sqrt{5}:8=8:p$

$$p = \frac{16\sqrt{5}}{5}$$

同様に BP=q とすると

したがって $\triangle ACQ \equiv \triangle BAP$ より $AQ = BP = \frac{8\sqrt{5}}{5}$ だから

$$PQ = AP - AQ = \frac{16\sqrt{5}}{5} - \frac{8\sqrt{5}}{5} = \frac{8\sqrt{5}}{5}$$

図2のように、関数 $y=x^2$ と関数 y=2x+15 のグラフがある。

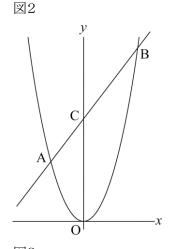
2 つのグラフは 2 点 A, B で交わり, 点 A, B の x 座標は, それぞれ, -3, 5 である。 関数 y=2x+15 のグラフと y 軸の交点を C とする。

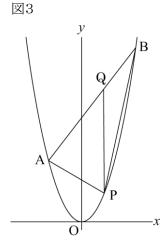
(長野県 2017年度)

- (1) 関数 $y=x^2$ について, x の変域が $-3 \le x \le 5$ のときの y の変域を求めなさい。
- (2) \triangle OBC の面積を求めたい。 \triangle OBC の底辺を OC とするとき,高さを表す値を,次のア〜エから 1 つ選び,記号を書きなさい。

$$\begin{pmatrix} & \mathcal{T} & \mathbb{A} & \mathbb{B} & \mathcal{D} & \mathcal{Y} & \mathbb{E} & \mathbb$$

(3) 関数 $y=x^2$ のグラフ上に点 P を、 \triangle APB の面積が 48 になるようにとりたい。 ただし、点 P の x 座標は 0 < x < 5 とする。 点 P の座標を、図3を使って次のように求めた。





[解答]

図3のように、放物線上の点 P を通り y 軸に平行な直線と線分 AB との交点を Q とし、点 P の x 座標を t とすると、

$$P(t, [v]), Q(t, [\bar{j}])$$

線分 PQ を底辺としたときの \triangle APQ の高さを h,

 \triangle BPQ の高さをh'とする。

 $\triangle APB = \triangle APQ + \triangle BPQ$ だから, $\triangle APB$ の面積は,

$$\frac{1}{2} \times PQ \times h + \frac{1}{2} \times PQ \times h'$$

$$= \frac{1}{2} \times PQ \times (h + h')$$
ここで、 $h + h' = \begin{bmatrix} \bar{\lambda} \\ \bar{\lambda} \end{bmatrix}$ より、

お

- ① [0, 1] に当てはまる式を t を用いて書きなさい。また,[a, 1] に当てはまる数を書きなさい。
- ② お に、t についての方程式と途中の過程を書き、点 P の座標を求め、解答を完成させなさい。

(1)	$\leq y \leq$				
(2)					
(3)	1)	V			
		j			
		え			
	2				

```
解答
(1) 0 \le y \le 25
(2) T
(3)
① v t^2 52t+15 \stackrel{?}{\sim} 8
(2)
\frac{1}{2}(2t+15-t^2)\times 8=48
これを解くと
t^2 - 2t - 3 = 0
(t+1)(t-3)=0
t = -1, 3
0 < t < 5 だから, t = 3 は問題にあうが
t=-1 は問題にあわない。
よって P (3, 9)
解説
(1)
関数 y=x^2 について x の変域に 0 を含むので y の値が最小となるのは x=0 のときで y=0
yの値が最大となるのは-3と5で絶対値が大きいx=5のときでy=5^2=25
よってyの変域は0 \le y \le 25
(2)
\triangleOBC の底辺を OC とするとき、高さは、点 B から y 軸にひいた垂線の長さに等しい。
つまり, 点 \mathbf{B} の x 座標で表される。
(3)
```

点 P は関数 $y=x^2$ のグラフ上にあるから,点 P の x 座標が t のとき,点 P の y 座標は t^2 (い))。 点 Q は関数 y=2x+15 のグラフ上にあるから,点 Q の x 座標が t のとき,点 Q の y 座標は 2t+15 (う))。 (点 A から直線 PQ までの距離)+ (点 B から直線 PQ までの距離) = (点 A から y 軸までの距離)+ (点 B から y 軸までの距離)だから, h+h'=5+3=8 (え))

②
$$\triangle$$
APB= $\frac{1}{2}$ \times PQ \times ($h+h'$)である。

 \triangle APB の面積が 48, PQ= $2t+15-t^2$, h+h'=8 だから

$$48 = \frac{1}{2} \times (2t + 15 - t^2) \times 8 \quad 2t + 15 - t^2 = 12 \quad t^2 - 2t - 3 = 0 \quad (t+1)(t-3) = 0 \quad t = -1, \ 3$$

0 < t < 5 だから t = -1 は問題にあわず t = 3 は問題にあっている。

よって 3²=9より P(3, 9)

(1)

【問 15】

図6において、点Aの座標は (-4, -5) であり、①は、点Aを通り、xの変域が x<0 であるときの反比例のグラフである。また、②は、関数 $y=ax^2$ (a>0) のグラフである。2 点B, C は放物線②上の点であり、その x 座標は、それぞれ-2、3 である。

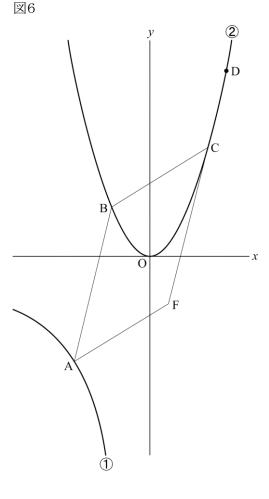
このとき、次の問1~問3に答えなさい。

(静岡県 2017年度)

問1 曲線①をグラフとする関数について, y を x の式で表しなさい。

問2 点 D は放物線②上の点であり、その x 座標は 4 である。点 D から y 軸に引いた垂線の延長が放物線②と交わる点を E とする。点 E の座標を、a を用いて表しなさい。

間3 点 F は四角形 AFCB が平行四辺形となるようにとった点である。3 点 B, O, F が一直線上にあるときの,a の値と点 F の座標を求めなさい。求める過程も書きなさい。



問1					
問2	E (,)			
問3	〔求める過程〕 答 a=	, F (,)	

問1
$$y = \frac{20}{x}$$

問2 E(-4, 16a)

問3

〔求める過程〕

省略

答
$$a$$
 の値 $\frac{5}{7}$,点 ${
m F}$ の座標 $\left(1 \quad , -\frac{10}{7} \right)$

解説

問1

曲線①は反比例のグラフだから、求める式を $y = \frac{b}{r}$ とする。

曲線①は点 A(-4, -5) を通るから $y = \frac{b}{x}$ に x = -4, y = -5 を代入すると $-5 = \frac{b}{-4}$ b = 20

よって求める式は $y = \frac{20}{x}$

問2

条件から, 点 \mathbf{D} の y 座標と点 \mathbf{E} の y 座標は等しくなり, この $\mathbf{2}$ 点は y 軸について対称である。よって, 点 \mathbf{D} の x 座標と点 \mathbf{E} の x 座標の絶対値は等しい。

点 D の x 座標は 4 だから,点 D の y 座標は, $y=ax^2$ に x=4 を代入して, $y=a\times 4^2=16a$ したがって D(4,16a) より E(-4,16a)

問3

 $y=a\times(-2)^2=4a$ 19 B(-2, 4a) $y=a\times3^2=9a$ 19 C(3, 9a)

3-(-2)=5, 9a-4a=5a だから, 点 B から右へ 5, 上へ 5a 進むと点 C に移る。

四角形 AFCB は平行四辺形であるから AF // BC, AF=BC より

点 A から右 \sim 5, 上 \sim 5a 進むと点 F に移る。

よって、A(-4, -5)より点 F O x 座標は-4+5=1、点 F O y 座標は-5+5a だから F(1, -5+5a) 3 点 B, O, F が一直線上にあるとき、直線 BO の傾きと直線 OF の傾きは等しくなる。

$$B(-2, 4a)$$
, $O(0, 0)$ だから, 直線 BO の傾きは $\frac{0-4a}{0-(-2)} = -2a$

$$O(0, 0)$$
, $F(1, -5+5a)$ だから, 直線 OF の傾きは $\frac{-5+5a-0}{1-0} = -5+5a$

よって
$$-2a = -5 + 5a$$

$$-7a = -5$$

$$a = \frac{5}{7}$$
 となるから

$$-5+5\times\frac{5}{7}=-\frac{10}{7}$$
 ± 9

$$F\Big(1, -\frac{10}{7}\Big)$$

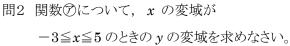
【問 16】

次の図のように、関数 $y=ax^2$ …⑦の グラフ上に 3 点 A, B, C を、y 軸上に 点 D を、四角形 ABCD が平行四辺形 となるようにとり、四角形 ABCD の辺 AB と y 軸との交点を E とする。

点 A の座標が (-4, -4), 点 B の座標が (2, p) のとき, あとの各問いに答えなさい。

(三重県 2017年度)

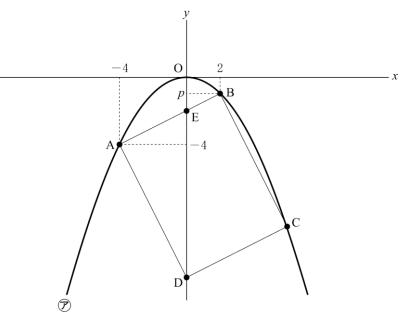
問1 a, p の値を求めなさい。



問4 点 D の座標を求めなさい。

問5 x 軸上に点 F をとり、 $\triangle CDF$ をつくる。 $\triangle CDF$ の面積と $\triangle AED$ の面積が等しくなるとき、点 F の座標を求めなさい。ただし、点 F は、直線 CD について、原点と同じ側にとるものとする。

問1	a=		
山口工	p=		
問2		$\leq y \leq$	
問3	y=		
問4	D	,	
問5	$\mathbf{F} \Big($,	



問1
$$a = -\frac{1}{4}$$
, $p = -1$

問2
$$-\frac{25}{4} \le y \le 0$$

問3
$$y = \frac{1}{2}x - 2$$

問4 D (0, -12)

問5 F
$$\left(\frac{32}{3}, 0\right)$$

解説

問1

関数⑦は $y=ax^2$ だから、点 A の座標の値を代入すると $-4=a\times(-4)^2$ $a=-\frac{1}{4}$

また、点 Bも関数⑦上の点なので $p=-\frac{1}{4}\times 2^2=-1$

問2

関数 $y=-\frac{1}{4}x^2$ は、下に開いている関数で x の変域に 0 を含むから、最大値は、x=0 のときで

y=0 また、-3と5では5のほうが絶対値が大きいので、最小値は、x=5のときで

$$y = -\frac{1}{4} \times 5^2 = -\frac{25}{4}$$

したがって求めるyの変域は $-\frac{25}{4} \le y \le 0$

問3

$$A(-4, -4)$$
, $B(2, -1)$ だから, 直線 AB の傾きは $\frac{(-1)-(-4)}{2-(-4)} = \frac{1}{2}$

この式を
$$y = \frac{1}{2}x + b$$
とおく。

この式に点 A の座標の値を代入すると $-4=\frac{1}{2}\times (-4)+b$ b=-2

したがって求める直線の式は $y = \frac{1}{2}x - 2$

問4

点 A を通り x 軸に平行な直線と点 B を通り y 軸に平行な直線の交点を P, 点 D を通り x 軸に平行な直線と点 C を通り y 軸に平行な直線の交点を Q とする。

このとき、四角形 ABCD が平行四辺形になるから、AB=DC、AB \parallel DC となり \triangle BAP= \triangle CDQ

ここで, AP=2-(-4)=6 だから, 点 D の x 座標は 0 より, 点 C の x 座標は, 0+6=6

よって、点 C は関数⑦上の点だから $y=-\frac{1}{4}\times 6^2=-9$ となり C(6, -9)

また BP = -1 - (-4) = 3 より, 点 D の y 座標は(-9) - 3 = -12 したがって D(0, -12) 問5

DE を底辺, 点 A から y 軸までの距離を高さと考えると, $\triangle AED = \frac{1}{2} \times \{-2 - (-12)\} \times 4 = 20$

点 F を通り、辺 CD に平行な直線と y 軸との交点を G とすると

底辺が CD で共通になり、高さも等しくなるから \triangle CDF= \triangle CDG となる。

ここで、点 G の座標を(0, g)とすると \triangle CDG= $\frac{1}{2}$ \times {g-(-12)} \times 6=3g+36

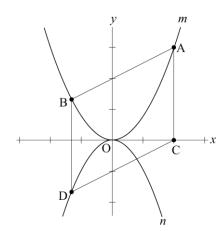
これが 20 になるので 3g+36=20 $g=-\frac{16}{3}$

よって点 F を通り、辺 CD に平行な直線は $y=\frac{1}{2}x-\frac{16}{3}$ となり

この直線とx軸との交点を求めると $0 = \frac{1}{2}x - \frac{16}{3}$ より, $x = \frac{32}{3}$ したがって, $F\left(\frac{32}{3}, 0\right)$

【問 17】

右図において、m は $y=\frac{3}{4}x^2$ のグラフを表し、n は $y=ax^2$ (a<0) のグラフを表す。A、B は m 上の点であって,A の x 座標は 2 であり,B の x 座標は負である。C は x 軸上の点であり,C の x 座標は A の x 座標と等しい。D は n 上の点であり,D の x 座標は B の x 座標と等しい。4 点 A, B, D, C を結んでできる四角形 ABDC は平行四辺形である。平行四辺形 ABDC の面積が 10 cm² であるときの a の値を求めなさい。求め方も書くこと。ただし,座標軸の 1 目もりの長さは 1 cm であるとする。



(大阪府 2017年度 B)

〔求め方〕		
<i>a</i> の値		

[求め方]

線分 BD とx 軸との交点を E とする。

Aの座標は (2,3) だから AC=3cm

平行四辺形 ABDC の面積が 10 cm^2 だから

$$EC = \frac{10}{3} cm$$

よって E の
$$x$$
 座標は $2-\frac{10}{3}=-\frac{4}{3}$

B は
$$m$$
 上の点だから B の y 座標は $\frac{3}{4} \times \left(-\frac{4}{3}\right)^2 = \frac{4}{3}$

したがって D の y 座標は
$$\frac{4}{3}$$
 $-3 = -\frac{5}{3}$

よって D の座標は
$$\left(-\frac{4}{3}, -\frac{5}{3}\right)$$

D は
$$n$$
 上の点だから $-\frac{5}{3} = a \times \left(-\frac{4}{3}\right)^2$

よって
$$a = -\frac{15}{16}$$

$$a$$
 の値 $-\frac{15}{16}$

解説

点 A は, x 座標が 2 で $y=\frac{3}{4}x^2$ 上の点だから y 座標を求めると $y=\frac{3}{4}\times 2^2=3$

ここで、点Bの座標がわかれば、x座標が等しいことから点Dのx座標がわかり

また AC=BD=3 だから点 D の y 座標も求められる。

まず, 辺 BD と x 軸の交点を E とおく。

四角形 ABDC の面積が 10 cm^2 で平行四辺形だから

辺 AC を底辺とすると AC=3 cm だから $3\times$ EC=10 より EC= $\frac{10}{3}$ cm

よって, 点 E の
$$x$$
 座標は $2-\frac{10}{3}=-\frac{4}{3}$

点 \mathbf{E} の x 座標は点 \mathbf{B} , 点 \mathbf{D} の x 座標と等しくなるから

$$x=-\frac{4}{3}$$
を $y=\frac{3}{4}x^2$ に代入して点 B の y 座標を求めると

$$y = \frac{3}{4} \times \left(-\frac{4}{3}\right)^2 = \frac{4}{3}$$

BD=3 より, 点 D の y 座標を s とすると
$$\frac{4}{3}$$
 $-s$ =3 s = $-\frac{5}{3}$

したがって
$$x=-\frac{4}{3}$$
, $y=-\frac{5}{3}$ を $y=ax^2$ に代入して整理すると

$$a = -\frac{15}{16}$$

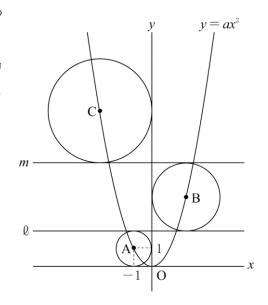
【問 18】

図のように、関数 $y=ax^2$ のグラフ上の点 A, B, C を中心とする 3 つの円がある。直線 ℓ , m は x 軸に平行で、点 A を中心とする円は x 軸、y 軸、直線 ℓ に、点 B を中心とする円は y 軸、直線 ℓ , m に、点 C を中心とする円は y 軸、直線 m にそれぞれ接しており、点 A の座標は (-1, 1) である。

次の問いに答えなさい。

(兵庫県 2017年度)

問1 a の値を求めなさい。



問2 点Bの座標を求めなさい。

問3 3 点 A, B, C を通る円の半径は何 cm か, 求めなさい。ただし, 座標軸の単位の長さは 1 cm とする。

問1	a=			
問2	(,)	
問3			cm	

```
解答
問1 a=1
問2 (2, 4)
問3 \sqrt{17} cm
解説
問1
点 A は関数 y=\alpha x^2 のグラフ上にあり、その座標は(-1, 1) だから
y=ax^2 に x=-1, y=1 を代入して 1=a\times (-1)^2 a=1
問2
点 B を中心とする円の半径を r(r>0) とする。
円の接線は、その接点を通る半径に垂直で点 A を中心とする円の直径は 2 だから
点 B の座標は(r, r+2)と表される。
点 B は関数 y=x^2 のグラフ上にあるから y=x^2 に x=r, y=r+2 を代入して
r+2=r^2 r^2-r-2=0 (r+1)(r-2)=0 r=-1, 2 r>0 だから r=2
よって B(2, 4)
間3
点 C を中心とする円の半径を s(s>0) とすると
点 A を中心とする円の直径は 2
点 Bを中心とする円の直径は 4 だから
点 C の座標は(-s, s+6) と表される。
点 C は関数 y=x^2 のグラフ上にあるから y=x^2 に x=-s, y=s+6 を代入して
s+6=(-s)^2
s^2 - s - 6 = 0
(s+2)(s-3)=0
s = -2, 3
s>0 だから
s=3
よって C(-3, 9)
点 A から x 軸に平行にひいた直線と、点 B から y 軸に平行にひいた直線との交点を D とする。
\triangle ADB において、三平方の定理より、AB^2 = AD^2 + DB^2 = \{2 - (-1)\}^2 + (4-1)^2 = 18
\triangleBEC において、三平方の定理より、BC<sup>2</sup>=BE<sup>2</sup>+EC<sup>2</sup>=(9-4)<sup>2</sup>+\{2-(-3)\}^2=50
```

 \triangle ADB において、三平方の定理より、 $AB^2=AD^2+DB^2=\{2-(-1)\}^2+(4-1)^2=18$ 点 B から y 軸に平行にひいた直線と、点 C から x 軸に平行にひいた直線との交点を E とする。 \triangle BEC において、三平方の定理より、 $BC^2=BE^2+EC^2=(9-4)^2+\{2-(-3)\}^2=50$ 点 A から x 軸に平行にひいた直線と、点 C から y 軸に平行にひいた直線との交点を F とする。 \triangle CFA において、三平方の定理より、 $CA^2=CF^2+FA^2=(9-1)^2+\{(-1)-(-3)\}^2=68$ よって 18+50=68 より $AB^2+BC^2=CA^2$ となるから 三平方の定理の逆より

△ABC は∠ABC=90° の直角三角形である。

円周角の定理の逆より 3 点 A, B, C を通る円は、線分 AC を直径とすることがわかるから その円の半径は $\sqrt{68}$ ÷2 = $2\sqrt{17}$ ÷2 = $\sqrt{17}$ cm

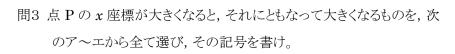
【問 19】

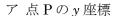
右の図のように、関数 $y = \frac{1}{4}x^2$ のグラフ上に 2 点 A, B があり、その x 座標はそれぞれ -2, 4 である。また、関数 $y = -x^2$ のグラフ上に 2 点 C, P があり、点 C の x 座標は -2、点 P はグラフ上を動く点で、その x 座標は 正の数である。各問いに答えよ。

(奈良県 2017年度)

問1 関数 $y=-x^2$ について, x の変域が-2 < x < 4 のときの y の変域を求めよ。

問22点B,Cを通る直線の式を求めよ。



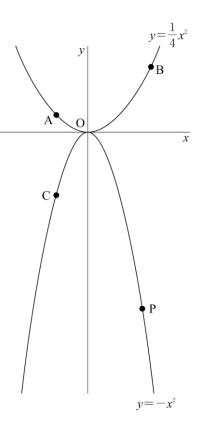


イ 線分 AP の長さ

ウ 直線 CP の傾き

エ △APBの面積

間4 点 P O x 座標が 3 Oとき, 四角形 ACPB の面積を求めよ。



問1	
問2	
問3	
問4	

```
解答
```

問1 $-16 < y \le 0$

問2
$$y = \frac{4}{3}x - \frac{4}{3}$$

問3 イ,エ

問4 50

解説

問1

下に開いているグラフでxの変域に0を含むので,最大値はx=0のときでy=0

最小値は-2と4で絶対値の値の大きいx=4のときで $y=-4^2=-16$

よって γ の変域は $-16 < \gamma \le 0$

問2

点 B の x 座標は 4 だから y 座標は $y = \frac{1}{4} \times 4^2 = 4$ で B(4, 4)

点 $C \mathcal{O} x$ 座標は-2 だから y 座標は $y = -(-2)^2 = -4$ で C(-2, -4)

よって 2 点 B, C を通る直線の式の傾きは $\frac{4-(-4)}{4-(-2)}=\frac{4}{3}$ となるから $y=\frac{4}{3}x+b$ とおける。

この直線の式は(4, 4) を通るので x=4, y=4 を代入すると $b=-\frac{4}{3}$

したがって求める直線の式は $y = \frac{4}{3}x - \frac{4}{3}$

問3

 $y=-x^2$ のグラフは下に開いているグラフなのでx座標が大きくなると点Pの位置は下へ動く。

ア 点 P の位置は下へ動くと y 座標の値は小さくなるので誤り。

イ 点 P の位置は下へ動くと、AP の長さは長くなるので正しい。

ウ 直線 CP の傾きの値は小さくなるから誤り。

エ ABの長さは変わらず、高さが大きくなるので正しい。

問4

点 $P \cap x$ 座標が 3 になるので $y=-3^2=-9$ で P(3,-9)

このとき 2 点 B, P を通る直線の式の傾きは $\frac{4-(-9)}{4-3}=13$ となるから y=13x+b とおける。

この直線の式は(4,4)を通るのでx=4,y=4を代入するとb=-48となりy=13x-48

この直線とx軸との交点を \mathbf{E} とすると $\mathbf{E}\left(\frac{48}{13}, 0\right)$

また, 直線 AC とx 軸との交点を Fとすると F(-2, 0) で A(-2, 1)

よって四角形 ACPB= ΔAFB+ ΔBFE+ ΔFCP+ ΔFPE

$$= \frac{1}{2} \times 1 \times \{4 - (-2)\} + \frac{1}{2} \times \left(2 + \frac{48}{13}\right) \times 4 + \frac{1}{2} \times 4 \times (2+3) + \frac{1}{2} \times \left(2 + \frac{48}{13}\right) \times 9$$

$$= 3 + \frac{148}{13} + 10 + \frac{333}{13} = 50$$

【問 20】

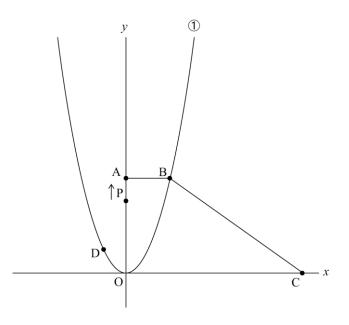
右の図のように、関数 $y = \frac{1}{2}x^2$ …①のグラフと台形 OABC がある。点 A, Cの座標はそれぞれ (0, 8), (16, 0) である。点 B, D は, ①のグラフ上にあり, B の x 座標は 4, D の x 座標は -2 である。

また, 点 P は原点 O を出発し, 毎秒 1 cm の速さで, 辺 OA, AB, BC 上を C まで動く。ただし, 原点 O から点 (1,0) までの距離, および原点 O から点 (0,1) までの距離は 1 cm とする。

次の問1~問4に答えなさい。

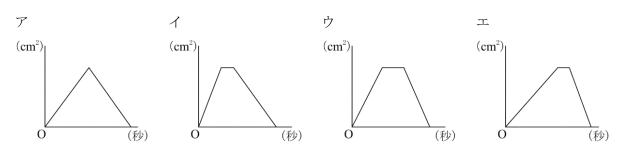
(和歌山県 2017年度)

問1 関数 $y = \frac{1}{2}x^2$ について、x の変域が $-6 \le x \le 4$ のとき、y の変域を求めなさい。



問2 直線 DP が直線 OB と平行になるのは、P が原点 O を出発してから何秒後と何秒後か、求めなさい。

問3 P が原点 O を出発してからの時間 (秒) と $\triangle OPC$ の面積 (cm^2) の関係をグラフに表したとき、そのグラフ に最も近いものを、次のア〜エの中から 1 つ選び、その記号をかきなさい。



問4 \triangle OPC の面積が、台形 OABC の面積の $\frac{1}{3}$ 倍になるときの P の座標をすべて求めなさい。

問1				
問2		秒後と	秒後	
問3				
問4				

問1 0≦y≦18

問26秒後と9秒後

問3 イ

問4
$$\left(0, \frac{10}{3}\right), \left(11, \frac{10}{3}\right)$$

解説

問1

xの変域に 0を含むので, yの値が最小となるのは, x=0 のときで, y=0

y の値が最大となるのは、-6 と 4 で絶対値が大きい x=-6 のときで、 $y=\frac{1}{2}\times (-6)^2=18$

よって, yの変域は, $0 \le y \le 18$

問2

まず, 直線 OB の傾きを求める。点 B は関数 $y=\frac{1}{2}x^2$ のグラフ上にあり, その x 座標は 4 だから,

 $y=\frac{1}{2}x^2$ に x=4 を代入して、 $y=\frac{1}{2}\times 4^2=8$ よって、B(4, 8)より、直線 OB の傾きは、 $\frac{8-0}{4-0}=2$ 次に、各辺上に点 P があるときの直線 DP の傾きを考える。

点 \mathbf{D} は関数 $y = \frac{1}{2} x^2$ のグラフ上にあり、その x 座標は-2 だから、 $y = \frac{1}{2} x^2$ に x = -2 を代入して、

$$y = \frac{1}{2} \times (-2)^2 = 2$$
 よって, D(-2, 2)

点 P が辺 OA 上にあるとき、直線 DP が直線 OB と平行になるのは、直線 DP の傾きが直線 OB の傾きと等しくなるときだから、

直線 DP の傾きが 2 となる点 P の座標を (0, s) とすると, $\frac{s-2}{0-(-2)}=2$

よって、s=6より、P(0,6) これは問題にあっているので、 $6\div1=6$ 秒後

点 P が辺 AB 上にあるとき, 直線 DP の傾きが 2 となる点 P の座標を (t, 8) とすると, $\frac{8-2}{t-(-2)}=2$

よって, t=1より, P(1, 8) これは問題にあっているので, $(8+1)\div1=9$ 秒後点 P の x 座標が 2 より大きくなると, 直線 DP の傾きが 2 より小さくなるから, 直線 DP が辺 BC と交わることはない。

したがって、6秒後と9秒後。

間3

 \triangle OPC の底辺を OC とすると、高さは点 P の y 座標で表される。

点 P が辺 OA 上を動くとき, 点 P の y 座標は大きくなるから, $\triangle OPC$ の面積は増加する。

点 P が辺 AB 上を動くとき、AB // OC より、点 P の y 座標は一定になるから、 $\triangle OPC$ の面積も一定。 点 P が辺 BC 上を動くとき、点 P の y 座標は小さくなるから、 $\triangle OPC$ の面積は減少する。

 \triangle OPC の面積は、 $\frac{1}{2} \times 16 \times 8 = 64$ cm²となり、最大である。

OA < BC より, 点 P が辺 OA 上を点 O から点 A まで動くのにかかる時間は 点 P が辺 BC 上を点 B から点 C まで動くのにかかる時間より短い。 以上のことから,最も近いグラフは,イである。

台形 OABC の面積は $\frac{1}{2}$ ×(4+16)×8=80cm² だから \triangle OPC の面積は $80 \times \frac{1}{3} = \frac{80}{3}$ cm²

 \triangle OPC の底辺を OC としたときの高さを h cm とすると $\frac{1}{2} \times 16 \times h = \frac{80}{3}$ $h = \frac{10}{3}$

点 $\mathbf{P} \circ \mathbf{y}$ 座標が $\frac{10}{3}$ になるときを考えればよい。

点 P が辺 OA 上にあるとき $\left(0, \frac{10}{3}\right)$ があてはまる。

点 P が辺 AB 上にあるとき, 点 P の y 座標は 8 で一定だから, 点 P の y 座標が $\frac{10}{3}$ になることはない。

点 P が辺 BC 上にあるとき,直線 BC の式に $y=\frac{10}{3}$ を代入すると,点 P の x 座標を求められる。

B(4, 8), C(16, 0) より, 直線 BC の傾きは $\frac{0-8}{16-4} = -\frac{2}{3}$

直線 BC の式を $y=-\frac{2}{3}x+b$ として x=16, y=0 を代入して整理すると $b=\frac{32}{3}$

よって直線 BC の式は $y=-\frac{2}{3}x+\frac{32}{3}$

これに $y=\frac{10}{3}$ を代入して整理すると, x=11 で $\left(11, \quad \frac{10}{3}\right)$ があてはまる。

したがって求める点 P の座標は $\left(0, \frac{10}{3}\right), \left(11, \frac{10}{3}\right)$

【問 21】

右の図のように,

関数 $y=ax^2$ …①

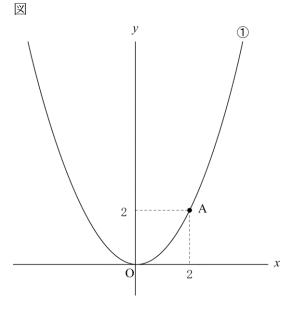
のグラフが, 点 A (2, 2) を通っている。

このとき、次の各問いに答えなさい。ただし、原点はOとする。

(鳥取県 2017年度)

問1 a の値を求めなさい。

問2 点 A を通り、傾きが-1の直線の式を求めなさい。



問3 問2で求めた直線と①のグラフとの交点のうち、点 A とは異なる点を B とするとき、 \triangle OAB の面積を求めなさい。

問4 ①のグラフ上を動く点 P がある。この点 P と問3の点 B とを結んでできる直線 BP と x 軸との交点を Q とする。このとき, $\triangle OPB$ の面積と $\triangle OPQ$ の面積が等しくなるような点 P の x 座標を求めなさい。ただし,点 P は x>0 を満たす範囲を動くものとする。

問1	a=
問2	
問3	
問4	x=

問1
$$a=\frac{1}{2}$$

問2 y = -x + 4

問3 12

問4 $x = 2\sqrt{2}$

解説

問1

$$A(2, 2)$$
を通るので、 $2=a\times 2^2$ $a=\frac{1}{2}$

問2

傾きが-1なので、求める式をy=-x+bとおく。

これに x=2, y=2 を代入して整理すると b=4

よって求める式はy=-x+4

間3

点 B の座標を求める。

$$\frac{1}{2}x^2 = -x + 4 \pm 9$$

$$x^2 + 2x - 8 = 0$$

$$(x+4)(x-2)=0$$

よって、 問2で求めた直線と1のグラフの交点のx座標は2と-4

x座標が 2 の点は A になるから、点 B の x 座標は-4 で、このときの y の値は $y=\frac{1}{2}\times 4^2=8$

また y=-x+4 と y 軸の交点を C とすると C(0, 4) となるから

問4

 \triangle OPB \Diamond OPQ の面積が等しくなるには

辺 BP, 辺 PQ を底辺と見たとき

原点 O が頂点となり高さが等しくなるので BP=PQ となればよい。

右の図のように、点Bからx軸に垂直に引き、その交点をR

点 Pから線分 BR に垂直に引き、その交点を Sとする。

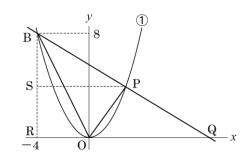
このとき BP=PQ とすると

SP // RQ より、BP:BQ=BS:BR となるから

1:2=BS:8 BS=4

よって SR=8-4=4 より, 点 P の y 座標は 4 となる。

したがって点 P は①のグラフ上の点だから $4 = \frac{1}{2} x^2$ より $x = 2\sqrt{2}$

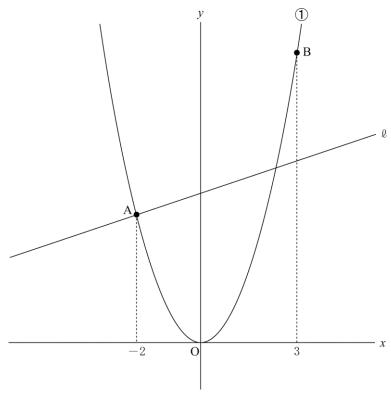


【問 22】

図1のように、関数 $y=x^2$ …① のグラフ上に 2 点 A, B があり、その x 座標はそれぞれー2、3 である。また、点 A を通る直線を ℓ とする。下の問1~問4に答えなさい。

(島根県 2017年度)

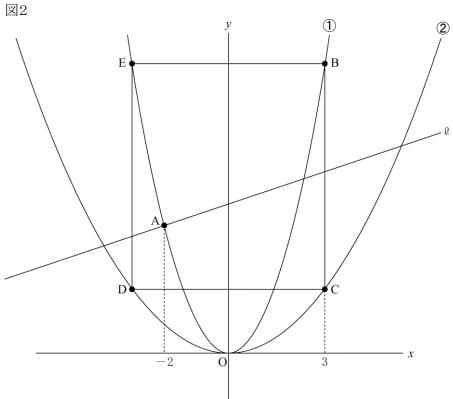
問1 関数①について、x の変域が $-2 \le x$ ≤ 3 であるときの y の変域を求めなさい。



問2 関数①について、xの値が-2から0まで増加するときの変化の割合を求めなさい。

問3 直線 ℓ が点Bを通るとき、直線 ℓ の式を求めなさい。

間4 図2のように、関数 $y=ax^2$ …②のグラフを図1にかき加え、②のグラフ上に点 B と x 座標が等しい点 C をとる。 さらに、四角形 BCDE が長方形となるように、点 D, E をグラフ②とグラフ①上にそれぞれとる。 ただし、a は 1 より小さい正の数である。 下の(1)~(3)に答えなさい。



(1) a の値が大きくなるとき, 辺 BC の長さはどうなるか, 次のア~ウから1つ選び, 記号で答えなさい。

ア 長くなる イ 短くなる ウ 変わらない

- (2) 長方形 BCDE が正方形となるとき, a の値を求めなさい。
- (3) 直線 ℓ が長方形 BCDE の面積を 2 等分するとき、直線 ℓ は点 A のほかにどのような点を通る直線であるか、次の形式に合うように答えなさい。

直線ℓは点Aと		を通る直線である
---------	--	----------

問1		$\leq y \leq$	
問2			
問3			
	(1)		
	(2)	a=	
問4	(3)	直線ℓは点Αと	を通る直線である。

問1 0≦y≦9

問2 - 2

問3 y=x+6

問4

(1) イ

(2)
$$a = \frac{1}{3}$$

(3) 直線 ℓ は点 A と長方形 BCDE の対角線 BD, CE の交点を通る直線である。解説

問1

xの変域に 0を含むから yの値が最小となるのは x=0 のときで y=0

yの値が最大となるのは-2と3で絶対値の大きいx=3のときで $y=3^2=9$

よってyの変域は $0 \le y \le 9$

問2

関数 $y=x^2$ について x=-2 のとき $y=(-2)^2=4$, x=0 のとき y=0

よって求める変化の割合は
$$\frac{0-4}{0-(-2)} = -2$$

間3

2点 A, B を通る直線の式を求めればよい。

問1, 問2の結果からA(-2, 4), B(3, 9)

2 点 A, B を通る直線の傾きは $\frac{9-4}{3-(-2)}=1$

求める直線の式をy=x+bとしてx=3, y=9を代入すると9=3+b b=6 よって求める式はy=x+6

問4

(1)

関数 $y=ax^2(0 < a < 1)$ のグラフは a の値が大きくなると開き方が小さくなる。 点 C の y 座標が大きくなるので、点 B の y 座標から点 C の y 座標をひいた差は小さくなる。 つまり辺 BC の長さは短くなる。

(2)

 $y=ax^2$ に x=3 を代入して $y=a\times 3^2=9a$ よって C(3, 9a)

ここで、点Bのy座標と点Eのy座標は等しくなり、この2点はy軸について対称だから

B(3, 9) より E(-3, 9)

同様にして C(3, 9a) より D(-3, 9a)

よって長方形 BCDE が正方形となるとき BC=BE が成り立つから BC=9-9a,

$$BE=3-(-3)=6$$
 より

9-9a=6

-9a = -3

$$a = \frac{1}{3}$$

(3)

長方形の対角線の交点を通る直線は、その長方形の面積を2等分する。また、長方形の面積を2等分する直線は、その長方形の対角線の交点を通る。

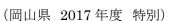
これらのことは、平行四辺形、ひし形、正方形においても成り立つ。

【問 23】

右の図のように、関数 $y=ax^2$ のグラフと直線 ℓ がある。

点 A(-2, 1) は、関数 $y=ax^2$ のグラフと直線 ℓ の交点であり、点 B(0, 1)

2) は直線 ℓ 上の点である。 原点 O と点 A を結ぶ。 問1~ 問4に答えなさい。



問1 直線 ℓ について, $y \in x$ の式で表しなさい。

問2 aの値を求めなさい。

問4 原点 O から直線 ℓ にひいた垂線と直線 ℓ の交点を H とし、 \triangle OHA と \triangle OHB を、直線 ℓ を軸として回転させてできる立体をそれぞれ P, Q とする。(1)、(2)に答えなさい。

(1) 立体 P の名称は、ア~エのうちのどれですか。一つ答えなさい。

ア 三角柱

イ三角錐

ウ円柱

工 円錐

(2) 立体 P, Q の体積をそれぞれ X, Y とする。X:Y と等しい比は, $P\sim$ エのうちではどれですか。一つ答えなさい。

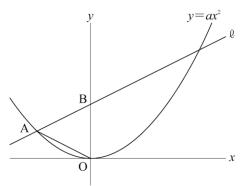
ア OA:OB

イ AH:BH

ウ OA³:OB³

エ AH³:BH³

問1	<i>y</i> =	=			
問2	a=	=			
問3					
目目 4	(1)				
問4	(2)				



問1
$$y = \frac{1}{2}x + 2$$

問2
$$a = \frac{1}{4}$$

問3 2

問4(1)エ (2)イ

解説

問1

$$A(-2, 1)$$
, $B(0, 2)$ を通るから、傾きは $\frac{2-1}{0-(-2)} = \frac{1}{2}$

また(0, 2) を通るので切片は2

よって
$$y = \frac{1}{2}x + 2$$

問2

$$y=ax^2$$
に $x=-2$, $y=1$ を代入して整理すると $a=\frac{1}{4}$

問3

OB=2 で、底辺とみると、高さは点 $A \ge y$ 軸の距離になるから 2

よって求める面積は
$$\frac{1}{2} \times 2 \times 2 = 2$$

問4

(1)

OH を半径とする円が底面になる円錐になるのでエ。

(2)

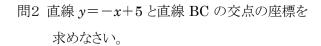
立体 P, Q はともに OH を半径とする円が底面になるから体積は高さに比例するので AH:BH となりイ。

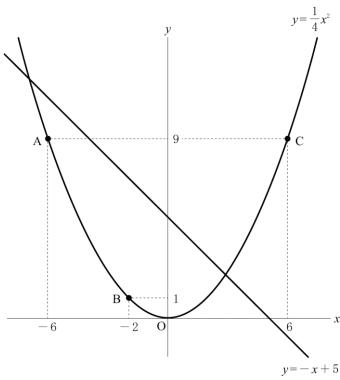
【問 24】

下の図のように、関数 $y = \frac{1}{4}x^2$ のグラフ上に、 3 点 A (-6, 9), B (-2, 1), C (6, 9) があり、直線 y = -x + 5 をひいた。問1~問4に答えなさい。

(徳島県 2017年度)

問1 関数 $y = \frac{1}{4} x^2$ のグラフと x 軸について線対称となるグラフの式を求めなさい。





問3 関数 $y=\frac{1}{4}x^2$ で、x の変域が $a \le x \le 6$ のとき、y の変域は $0 \le y \le 9$ である。a がとることのできる値の範囲を求めなさい。

間4 \triangle AOC の面積を 2 等分する x 軸に平行な直線の式を求めなさい。

問1			
問2	(,)
問3			
問4			

問1
$$y = -\frac{1}{4}x^2$$

問2 (1,4)

問3 $-6 \le a \le 0$

問4
$$y = \frac{9\sqrt{2}}{2}$$

解説

問1

 $y=ax^2$ と $y=-ax^2$ は同じxの値に対応するyの絶対値が等しく符号が反対になるのでこの2つのグラフはx軸を対称の軸として線対称になる。

よって
$$y = \frac{1}{4} x^2$$
 のグラフと x 軸について線対称となるグラフは $y = -\frac{1}{4} x^2$

問2

直線 BC は傾きが
$$\frac{9-1}{6-(-2)} = 1$$
 より $y=x+b$ とおける。

この直線は(6, 9) を通るので x=6, y=9 を代入すると b=3

よって直線 BC とy=-x+5 の交点はx+3=-x+5 より x=1

これをy=-x+5 に代入してy=4 となるから

求める交点の座標は(1,4)

問3

$$y = \frac{1}{4} x^2$$
 のグラフは上に開いているグラフで y の変域に 0 が含まれているから

x の変域にも 0 が含まれる。

また y=9 となるのは x=6 のときと x=-6 のときなので a のとることのできる範囲は $-6 \le a \le 0$ 問4

$$\triangle AOC$$
 の面積は $\frac{1}{2} \times 12 \times 9 = 54$

ここで原点と点 C を通る直線の式を求めると $y=\frac{3}{2}x$

原点と点 A を通る直線の式を求めると $y=-\frac{3}{2}x$ となる。

 \triangle AOC の面積を 2 等分する x 軸に平行な直線の式を y=t(t>0)とおくと

$$y = \frac{3}{2} x$$
 との交点 D は $\left(\frac{2}{3}t, t\right)$

$$y = -\frac{3}{2}x$$
 との交点 E の座標は $\left(-\frac{2}{3}t, t\right)$ となる。

よって△EOD=
$$\frac{1}{2}$$
× $\left(\frac{2}{3}t+\frac{2}{3}t\right)$ × $t=\frac{2}{3}t^2$

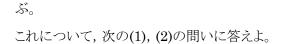
これが \triangle AOC の面積の半分と等しくなるから $\frac{2}{3}t^2 = 27$

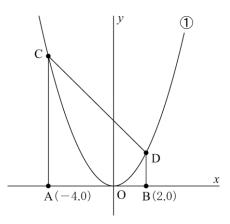
整理すると
$$t>0$$
 より $t=\frac{9}{2}\sqrt{2}$

よって求める式は
$$y = \frac{9}{2}\sqrt{2}$$

【問 25】

右の図で、点 O は原点であり、2 点 A、B の座標はそれぞれ(-4, 0)、(2、0) である。放物線①は関数 $y=\frac{1}{2}x^2$ のグラフである。点 A を通り、y 軸に平行な直線をひき、放物線①との交点をCとする。また、点 Bを通り、y 軸に平行な直線をひき、放物線①との交点を D とし、点 C と点 D を結





(香川県 2017年度)

- (1) 関数 $y = \frac{1}{2}x^2$ で、xの変域が $-3 \le x \le 1$ のとき、yの変域を求めよ。
- (2) 線分 CD 上に点 E をとる。直線 AE が台形 ABDC の面積を 2 等分するとき、点 E の x 座標はいくらか。 点 E の x 座標を a として、a の値を求めよ。

(1)	
(2)	a=

$$(1) \ 0 \le y \le \frac{9}{2}$$

(2)
$$a = -\frac{1}{4}$$

解説

(1)

上に開いているグラフで、xの変域に0を含むので、最小値は、x=0のときでy=0

最大値は
$$-3$$
と1で絶対値が大きい $x=-3$ のときで $y=\frac{1}{2}\times(-3)^2=\frac{9}{2}$

よってyの変域は $0 \le y \le \frac{9}{2}$

(2)

点 C, D の座標をそれぞれ求めると C(-4, 8), D(2, 2)

台形 ABDC の面積は

$$\frac{1}{2} \times (2+8) \times 6 = 30$$

直線 AE が台形 ABDC の面積を 2 等分するので \triangle CAE= $30\div2=15$

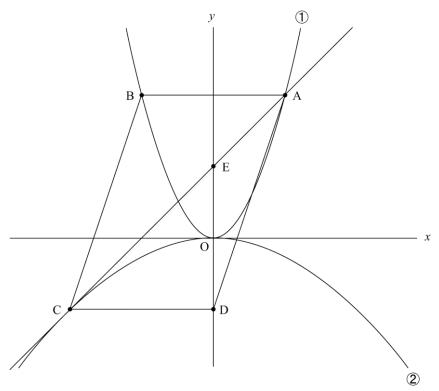
$$\triangle {
m CAE}$$
 の面積を a を使って $\frac{1}{2}$ $imes 8 imes \{a-(-4)\}$ と表せるから

$$\frac{1}{2} \times 8 \times \{a - (-4)\} = 15$$

これを整理すると
$$a=-\frac{1}{4}$$

【問 26】

下の図において、放物線①は関数 $y=x^2$ のグラフであり、①上の x 座標が 2 である点を A、点 A を通り x 軸に平行な直線と①との交点のうち、点 A と異なる点を B とする。放物線②は関数 $y=ax^2$ (a<0) のグラフであり、②上に点 C、y 軸上に点 D を、四角形 ABCD が平行四辺形となるようにとり、直線 AC と y 軸との交点を E とすると、点 E の y 座標が 2 となった。



このとき, 次の問いに答えなさい。

(愛媛県 2017年度)

問1 点 B の座標を求めよ。

問2 直線 AC の式を求めよ。

問3 aの値を求めよ。

間4 点 P は,放物線①上を,原点 O から点 B まで動く点とする。点 P を通り y 軸に平行な直線と放物線②との 交点を Q とする。 $\triangle ABP$ の面積と $\triangle CDQ$ の面積が等しくなるとき,点 P の x 座標を求めよ。

問1	
問2	
問3	a=
問4	

問
$$1(-2,4)$$

問2
$$y=x+2$$

問3
$$(a=)$$
 $-\frac{1}{8}$

問4
$$-\frac{4\sqrt{7}}{7}$$

解説

問1

線分 AB は x 軸に平行で、2 点 A、B は関数 $y=x^2$ のグラフ上にあるから 点 A と点 B は y 軸について対称である。

問2

点 E は直線 AC 上にあるから 2 点 A, E を通る直線の式を求めればよい。

$$A(2, 4)$$
, $E(0, 2)$ だから、この直線の傾きは $\frac{4-2}{2-0} = 1$

切片は、点 E O y 座標より 2 である。

よって求める直線の式はy=x+2

問3

四角形 ABCD は平行四辺形だから CD=BA=2-(-2)=4

点 D は y 軸上にあり、その x 座標は 0 だから、点 C の x 座標は 0-4=-4

$$y=x+2$$
 に $x=-4$ を代入して $y=-4+2=-2$

点 C は関数 $y=ax^2$ のグラフ上にあるから

$$-2 = a \times (-4)^2$$

$$16a = -2$$

$$a = -\frac{1}{8}$$

問4

 \triangle ABP の底辺を AB \triangle CDQ の底辺を CD とすると AB=CD だから

 \triangle ABP の面積と \triangle CDQ の面積が等しくなるとき、高さも等しくなる。

点
$$P \mathcal{O} x$$
 座標を $p(-2 \le p \le 0)$ とすると $P(p, p^2)$, $Q\left(p, -\frac{1}{8}p^2\right)$ と表される。

 $\triangle ABP$ の高さは $4-p^2$

$$\triangle CDQ$$
 の高さは $-\frac{1}{8}p^2-(-2)=-\frac{1}{8}p^2+2$ となるから

$$4-p^2 = -\frac{1}{8}p^2 + 2 \downarrow 0$$

$$p^2 = \frac{16}{7}$$

$$p = \pm \frac{4\sqrt{7}}{7}$$

$$-2 \le p \le 0$$
 だから

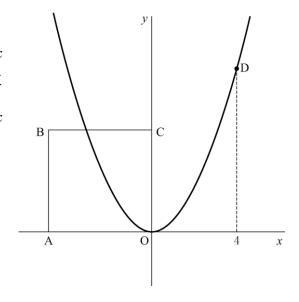
$$p = -\frac{4\sqrt{7}}{7}$$

【問 27】

下の図のように、関数 $y=\frac{1}{2}x^2$ のグラフと、1 辺の長さが a の正方形 OABC がある。点 A は x 軸上の点であり、点 A の x 座標は負である。点 C は y 軸上の点であり、点 C の y 座標は正である。点 D は関数 $y=\frac{1}{2}x^2$ のグラフ上の点であり、点 D の x 座標は 4 である。このとき、次の問1・問2に答えなさい。

(高知県 2017年度)

問1 点 D の座標を求めよ。



問2 CO=CD のとき, 次の(1)・(2)の問いに答えよ。

- (1) a の値を求めよ。
- (2) 四角形 OABC が正方形であることから、CO=CB である。さらに、CO=CD であることから、3 点 O, B, D は点 C を中心とする 1 つの円の周上の点であることがわかる。このことと円の性質を利用して、 $\angle ODB$ の大きさを求めることができる。 $\angle ODB$ の大きさは何度か。ただし、どのような円の性質を利用したかを説明したうえで、答えを求める過程がわかるように書くこと。

問1		(,)	
	(1)	a=			
問2	(2)	答	度		

問1 (4,8)

問2

(1) a = 5

(2)

弧 OB に対する円周角は∠ODB

中心角は ZOCB であり、円周角は中心角の半分であるから

$$\angle ODB = \frac{1}{2} \angle OCB \cdots \bigcirc$$

また四角形 OABC は正方形であるから

 $\angle OCB = 90^{\circ} \cdots \bigcirc \bigcirc$

①, ②より

$$\angle \text{ODB} = \frac{1}{2} \times 90^{\circ} = 45^{\circ}$$

答 45 度

解説

問1

点 D は関数
$$y = \frac{1}{2} x^2$$
 のグラフ上にあり

そのx座標は4だから $y=\frac{1}{2}x^2$ にx=4を代入して

$$y = \frac{1}{2} \times 4^2 = 8$$

よって D (4, 8)

問2

(1)

点 D からy 軸に平行にひいた直線と

点 C から x 軸に平行にひいた直線との交点を E とする。

また, 点 D から y 軸に平行にひいた直線と x 軸との交点を F とする。

 \triangle CDE は CE=OF=4, EF=CO=a, \angle CED=90° の直角三角形となるから

△CDE において

三平方の定理より

$$CE^2 + ED^2 = CD^2$$

よって
$$4^2+(8-a)^2=a^2$$
 より

a=5

(2)

点 Cを中心として3点O,B,Dを通る円をかいて考える。

使う円の性質は「1 つの弧に対する円周角の大きさは

中心角の大きさの半分である」ということ。

点 C が中心になるので \widehat{OB} に対する円周角は $\angle ODB$, 中心角は $\angle OCB$ である。

【問 28】

図のように、関数 $y=x^2$ のグラフ上に 2 点 A, B がある。四角形 AOCB は長 方形であり、点 A の x 座標は $-\frac{1}{2}$ である。

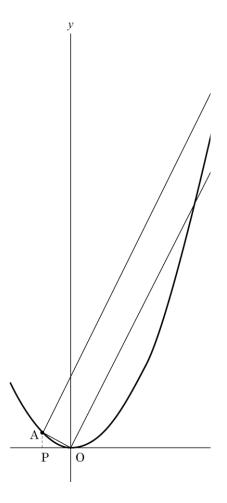
2点 A, C から x 軸に垂線 AP, CQ をそれぞれひくとき、問1~問5に答えなさい。

(佐賀県 2017年度 一般)

問1 △APO の面積を求めなさい。

問2 $\triangle APO$ \hookrightarrow $\triangle OQC$ である。このことを用いて、直線 OC の傾きを求めなさい。

問3 直線 AB 上に点 M があり、関数 $y=x^2$ のグラフ上に点 N (t, t^2) がある。点 M と点 N o x 座標が等しいとき、点 M の座標を t を用いて表しなさい。



問4 点 B の座標を求めなさい。

問5 △OQCの面積を求めなさい。

問1			
問2			
問3	М (,	
問4	В (,)
問5			

問1
$$\frac{1}{16}$$

問2 2

問3
$$\mathbf{M}\left(t, 2t + \frac{5}{4}\right)$$

問4 B
$$\left(\frac{5}{2}, \frac{25}{4}\right)$$

問5 9

解説

問1

$$y = \left(-\frac{1}{2}\right)^2 = \frac{1}{4} \pm 0, A\left(-\frac{1}{2}, \frac{1}{4}\right)$$

$$\triangle APO = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} = \frac{1}{16}$$

問2

△APO∽△OQCより

$$AP = \frac{1}{4}$$
, $PO = \frac{1}{2}$ だから

$$\frac{1}{4}$$
: OQ = $\frac{1}{2}$: QC

整理をすると QC = 2OQ

直線 OC の傾きは $\frac{QC}{OQ}$ と表されるから

$$QC = 2OQ \downarrow 0 \frac{QC}{OQ} = 2$$

問3

四角形 AOCB は長方形だから AB // OC

平行な2直線の傾きは等しいから

直線 AB の式は y=2x+b と表される。

$$y=2x+b$$
 に $x=-rac{1}{2}$, $y=rac{1}{4}$ を代入すると $rac{1}{4}=2 imes\left(-rac{1}{2}
ight)+b$ $b=rac{5}{4}$

よって直線 AB の式は $y=2x+\frac{5}{4}$ となる。

直線 AB 上の点 M の x 座標は、点 N の x 座標に等しく t であるから、点 M の y 座標は $2t+\frac{5}{4}$

従って
$$M\left(t, 2t + \frac{5}{4}\right)$$

間4

問3で、点Mと点Nが一致する場合を考えればよい。

$$M\left(t, 2t + \frac{5}{4}\right)$$
, $N(t, t^2)$ だから $2t + \frac{5}{4} = t^2$

整理をして t の値を求めると $t=\frac{5}{2}$, $-\frac{1}{2}$

$$-rac{1}{2}$$
 は点 A の x 座標だから $rac{5}{2}$ が点 B の x 座標になるので B $\left(rac{5}{2}, rac{25}{4}
ight)$

問5

点 B を通り、y 軸に平行な直線と点 C を通り、x 軸に平行な直線の交点を D とする。

このとき、
$$\triangle APO \equiv \triangle BDC$$
 になり $AP = \frac{1}{4}$ 、 $PO = \frac{1}{2}$ だから $BD = \frac{1}{4}$ 、 $DC = \frac{1}{2}$

よって
$$B\left(\frac{5}{2}, \frac{25}{4}\right)$$
より $C(3, 6)$ となるから $\triangle OQC = \frac{1}{2} \times 3 \times 6 = 9$

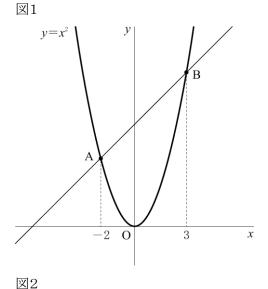
【問 29】

図1, 図2のように, 関数 $y=x^2$ のグラフ上に 2 点 A, B があり, 2 点 A, B ∞ x 座標はそれぞれ-2, 3 である。 原点を O として, 次の問い に答えなさい。

(長崎県 2017年度)

問1 点Aのy座標を求めよ。

問2 直線 AB の式を求めよ。



問3 関数 $y=x^2$ について, x の変域が $-2 \le x \le 3$ のときの y の変域を求めよ。

問4 △OABの面積を求めよ。

 $y=x^2$ y B C P X

問5 図2のように、直線 AB と y 軸との交点を C とする。線分 OB 上に点 P を、四角形 OACP と \triangle BCP の面積の比が 2:1 になるようにとる。このとき、点 P の x 座標を求めよ。

問1	
問2	y=
問3	$\leq y \leq$
問4	
問5	

```
解答
```

問1 4

問2 y=x+6

問3 0≦*y*≦9

問4 15

問5 $\frac{4}{3}$

解説

問1

点 A は関数 $y=x^2$ のグラフ上にあり、その x 座標は-2 だから $y=x^2$ に x=-2 を代入して $y=(-2)^2=4$

問2

点 B は関数 $y=x^2$ のグラフ上にあり、その x 座標は 3 だから $y=x^2$ に x=3 を代入して $y=3^2=9$ よって B(3, 9)

問1より A(-2, 4) だから、直線 AB の傾きは
$$\frac{9-4}{3-(-2)} = \frac{5}{5} = 1$$

直線 AB の式を y=x+b として x=3, y=9 を代入すると 9=3+b b=6 したがって y=x+6

問3

xの変域に 0 を含むので y の値が最小となるのは x=0 のときで y=0 y の値が最大となるのは-2 と 3 で絶対値の大きい x=3 のときで y=9 よって y の変域は $0 \le y \le 9$

問4

直線 AB と y 軸との交点を C とすると C(0, 6) となる。

$$\triangle OAB = \triangle OAC + \triangle OBC = \frac{1}{2} \times 6 \times 2 + \frac{1}{2} \times 6 \times 3 = 15$$

問5

四角形 OACP \Diamond OACP の面積の比が 2:1 だから、四角形 OACP の面積は \Diamond OAB の面積の $\frac{2}{3}$ である。

よって
$$15 \times \frac{2}{3} = 10$$

点 $P \cap x$ 座標を $p(0 \le p \le 3)$ とすると

△OAC の面積+△OPC の面積=四角形 OACP の面積より

$$\frac{1}{2} \times 6 \times 2 + \frac{1}{2} \times 6 \times p = 10$$

整理すると $p=\frac{4}{3}$

 $0 \le p \le 3$ より

この解は問題にあっている。

【問 30】

図1, 図2のように、関数 $y=ax^2$ のグラフ上に 2 点 A, B があり、2 点 A, B の x 座標はそれぞれ-1, 1 である。2 点 A, B から x 軸に ひいた垂線とx 軸との交点をそれぞれ C, Dとするとき四角形 ABDC の面積は 2 である。原点を O として、次の問いに答えなさい。ただし、a<0とする。

(長崎県 2017年度)

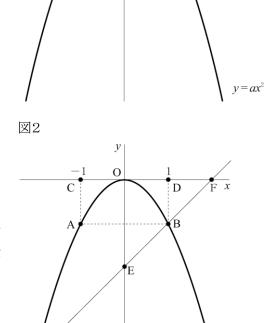
図1

問1 a の値を求めよ。

問2 関数 $y=ax^2$ について, x の変域が $-1 \le x \le 2$ のときの y の変域を求めよ。

問3 図2のように、y 軸上に原点と異なる点 E を \triangle ABE が直角二等辺三角形となるようにとり、直線 BE と x 軸との交点を F とする。このとき、次の(1)~(3)に答えよ。

(1) 直線 BE の式を求めよ。



 $y = ax^2$

O

D

(2) 関数 $y=ax^2$ のグラフ上に点 G をとる。 \triangle CFG が CG=FG の二等辺三角形になるときの点 G の座標を求めよ。

(3) 点 P を x 座標が正となるように直線 BE 上にとる。次に、2 点 Q, R を関数 $y=ax^2$ のグラフ上にとり、2 直線 PQ, QR がそれぞれ y 軸、x 軸に平行となるようにする。さらに、点 P と y 軸について対称な点を S とし、四角形 PQRS をつくる。四角形 PQRS が正方形になるときの点 P の x 座標をすべて求めよ。

問1	a=			
問2			$\leq y \leq$	
	(1)	y=		
問3	(2)	G	,	
	(3)			

```
解答
```

問1 a = -1

問2 $-4 \le y \le 0$

問3 (1)
$$y=x-2$$
 (2) $G\left(\frac{1}{2}, -\frac{1}{4}\right)$ (3) $\frac{-3+\sqrt{17}}{2}$, 2

解説

問1

A(-1, a), B(1, a), C(-1, 0), D(1, 0) となる。

AB=1-(-1)=2, AC=0-a=-a だから、四角形 ABDC の面積は $-a\times 2=-2a$ と表される。

この面積が2であるから-2a=2 a=-1

a < 0 より、この解は問題にあっている。

問2

-1と2で絶対値の大きい γ の値が最小となるのは x=2 のときで $\gamma=-2^2=-4$ y の値が最大となるのは x の変域に 0 を含むので x=0 のときで y=0

よってyの変域は $-4 \le y \le 0$

問3

(1)

点 Aと点 B は y 軸について対称であるから、線分 AB と y 軸は垂直である。

線分 ABと y 軸との交点を Hとすると $\triangle ABE$ は直角二等辺三角形だから $\angle HBE=45^{\circ}$

よって \angle HEB= 180° $-(90^{\circ}+45^{\circ})=45^{\circ}$ より \triangle HBEも直角二等辺三角形になる。

HE=HB=1, H(0,-1)だから E(0,-2) B(1,-1) より, 直線 BE の式は y=x-2

(2)

CG=FG より、点 G は、線分 CF の垂直二等分線上にある。

y=x-2 に y=0 を代入すると x=2 だから F(2,0)

ここで CF=2-(-1)=3より, 線分 CF の中点の
$$x$$
座標は $-1+\frac{3}{2}=\frac{1}{2}$

よって点
$$G$$
 の x 座標は $\frac{1}{2}$ とわかるので $y=-x^2$ に $x=\frac{1}{2}$ を代入して $y=-\left(\frac{1}{2}\right)^2=-\frac{1}{4}$

したがって
$$G\left(\frac{1}{2}, -\frac{1}{4}\right)$$

点 P の x 座標を p(p>0) とすると P(p, p-2), $Q(p, -p^2)$, $R(-p, -p^2)$, S(-p, p-2)と表される。 0 のとき, 点 P の y 座標は, 点 Q の y 座標より小さくなる。

$$PQ = -p^2 - (p-2) = -p^2 - p + 2$$

$$QR = p - (-p) = 2p \ \ \sharp \ \ \ \ \ -p^2 - p + 2 = 2p \ \ \ \ p^2 + 3p - 2 = 0$$

$$QR = p - (-p) = 2p \, \sharp \, 0 - p^2 - p + 2 = 2p \, p$$

$$p = \frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times (-2)}}{2 \times 1} = \frac{-3 \pm \sqrt{17}}{2}$$

0 より

$$p = \frac{-3 + \sqrt{17}}{2}$$

p>1 のとき, 点 P の y 座標は, 点 Q の y 座標より大きくなる。

$$PQ = p - 2 - (-p^2) = p^2 + p - 2$$

QR=
$$p-(-p)=2p$$
 $\downarrow 0$ $p^2+p-2=2p$ $p^2-p-2=0$ $(p+1)(p-2)=0$

p = -1, 2

p>1 $\downarrow 0$

p=2

したがって
$$p=\frac{-3+\sqrt{17}}{2}$$
, 2

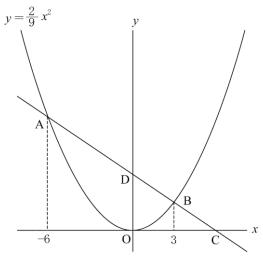
【問 31】

右の図のように、関数 $y=\frac{2}{9}x^2$ のグラフ上に 2 点 A, B がある。A の x 座標は -6, B の x 座標は 3 であり、点 C は、直線 AB と x 軸との交点である。また、点 D は直線 AB と y 軸との交点であり、点 D は原点である。

このとき, 次の各問いに答えなさい。

(熊本県 2017年度)

問1 点Aのy座標を求めなさい。



問2 関数 $y=\frac{2}{9}x^2$ について、x の値が-6 から 3 まで増加するときの変化の割合を求めなさい。

問3 直線 AB の式を求めなさい。

問4 \triangle OCD の内部に, x 座標, y 座標がともに整数である点はいくつあるか, 求めなさい。 ただし, \triangle OCD の辺上の点は含まないものとする。

問1	
問2	
問3	y=
問4	個

問18

問2
$$-\frac{2}{3}$$

問3
$$y = -\frac{2}{3}x + 4$$

問4 7個

解説

問1

$$y = \frac{2}{9}x^2$$
 に $x = -6$ を代入して $y = \frac{2}{9} \times (-6)^2 = 8$

問2

$$x = -6$$
 のとき $y = 8$ $x = 3$ のとき $y = \frac{2}{9} \times 3^2 = 2$

よって
$$x$$
の値が -6 から 3 まで増加するときの変化の割合は $\frac{2-8}{3-(-6)}=-\frac{2}{3}$

問3

問2から直線 AB の傾きは $-\frac{2}{3}$ なので、直線の式を $y=-\frac{2}{3}x+b$ とおく。

この式に x=3, y=2 を代入して整理すると b=4

よって
$$y = -\frac{2}{3}x + 4$$

問4

直線 AB の式が $y=-\frac{2}{3}x+4$ と表せるので x 軸との交点 C の座標を求めると $0=-\frac{2}{3}x+4$ x=6 よって Δ OCD の内部にあって x 座標が整数なるのは x=1, 2, 3, 4, 5 のとき。 したがって

$$x=1$$
 のとき $y=-\frac{2}{3}\times 1+4=\frac{10}{3}$ となるから、条件を満たす点は 3 個。

$$x=2$$
 のとき $y=-\frac{2}{3}\times 2+4=\frac{8}{3}$ となるから, 条件を満たす点は 2 個。

$$x=3$$
 のとき $y=-\frac{2}{3} \times 3 + 4 = 2$ となるから,条件を満たす点は 1 個。

$$x=4$$
 のとき $y=-\frac{2}{3} \times 4+4=\frac{4}{3}$ となるから,条件を満たす点は 1 個。

$$x=5$$
 のとき $y=-\frac{2}{3}\times 5+4=\frac{2}{3}$ となるから,条件を満たす点は 0 個。

よって全部で 3+2+1+1+0=7 個

【問 32】

右の図のように、2つの関数

$$y=ax^2$$
 (a は定数) …⑦

$$y=\frac{b}{x}$$
 (x>0, b は定数) …①

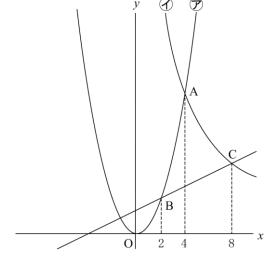
のグラフがある。

点 A は関数⑦、 Ω のグラフの交点で、A の x 座標は 4 である。点 B は関数⑦のグラフ上にあって、B の x 座標は 2 であり、 点 C は関数 Ω のグラフ上にあって、C の x 座標は 8 である。

点 C は関数D のクラン上にあって、C の x 座標は 8 である。 また、関数D について、x の値が 2 から 4 まで増加するときの

変化の割合は $\frac{9}{2}$ である。

このとき, 次の各問いに答えなさい。



(熊本県 2017年度)

問1 a, b の値を求めなさい。

問2 直線 BC の式を求めなさい。

- 問3 関数⑦のグラフ上において 2 点 A, B の間に点 P ε , 線分 BC 上において 2 点 B, C とは異なる点 Q ε , 直線 PQ が x 軸と平行になるようにとる。また,直線 PQ と y 軸との交点を R とする。
 - (1) 点 $P \cap x$ 座標を t として, 線分 PQ の長さを, t を使った式で表しなさい。
 - (2) PQ:PR=3:2 となるときの P の座標を求めなさい。

問1	a=	=	, b=	
問2	<i>y</i> =	=		
	(1)			
問3	(2)		,	

問1
$$a = \frac{3}{4}$$
, $b = 48$

問2
$$y = \frac{1}{2}x + 2$$

問3 (1)
$$\frac{3}{2}t^2-4-t$$
 (2) $\left(\frac{8}{3}, \frac{16}{3}\right)$

(2)
$$\left(\frac{8}{3}, \frac{16}{3}\right)$$

解説

問1

点 A, B ともに関数⑦上の点なので A(4, 16a), B(2, 4a) と表せる。

関数⑦について, x の値が 2 から 4 まで増加するときの変化の割合が $\frac{9}{2}$ になることから

$$\frac{16a-4a}{4-2} = \frac{9}{2}$$
がいえる。

これを整理すると $a=\frac{3}{4}$

よって A(4, 12) となるから
$$y = \frac{b}{x}$$
 に代入して $b = 48$

問2

点
$$C$$
 は $y = \frac{48}{x}$ 上の点なので $x = 8$ を代入すると $y = 6$

また問1より、B(2,3) となるから、直線 BC の傾きは $\frac{6-3}{8-2}=\frac{1}{2}$ なので、直線の式を $y=\frac{1}{2}x+c$ とおく。

この式に
$$x=2$$
, $y=3$ を代入して整理すると $c=2$

よって
$$y = \frac{1}{2}x + 2$$

問3

点 P は関数⑦上の点なので
$$y=\frac{3}{4}x^2$$
 に $x=t$ を代入して $y=\frac{3}{4}t^2$ で $P\left(t, \frac{3}{4}t^2\right)$

直線 PQとx 軸は平行になるので、点 Pと点 Qのy座標は等しくなるから

$$y = \frac{3}{4}t^2$$
を $y = \frac{1}{2}x + 2$ に代入して整理すると $x = \frac{3}{2}t^2 - 4$

よって線分 PQ の長さは
$$\left(\frac{3}{2}t^2-4\right)-t=\frac{3}{2}t^2-4-t$$

(1)より
$$PQ = \frac{3}{2}t^2 - 4 - t$$
, $PR = t$ どなるから $\left(\frac{3}{2}t^2 - 4 - t\right)$: $t = 3:2$

整理すると $3t^2 - 5t - 8 = 0$

解の公式より
$$x = \frac{-(-5)\pm\sqrt{(-5)^2-4\times3\times(-8)}}{2\times3} = \frac{5\pm11}{6}$$

よって
$$x = \frac{5+11}{6} = \frac{8}{3}$$
, $x = \frac{5-11}{6} = -1$

点 P は点 A と点 B の間の点なので-1 は問題に適さないから $x=\frac{8}{2}$

したがって
$$P\left(\frac{8}{3}, \frac{16}{3}\right)$$

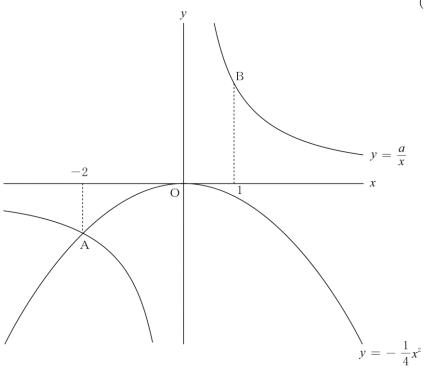
【問 33】

下の図のように、関数 $y = \frac{a}{x} (a > 0)$ のグラフ上に 2 点 A, B があり、それぞれの x 座標は-2、1 である。

関数
$$y = \frac{a}{x}$$
 と関数 $y = -\frac{1}{4}x^2$ のグラフは, 点 A で交わっている。

次の問1~問3に答えなさい。

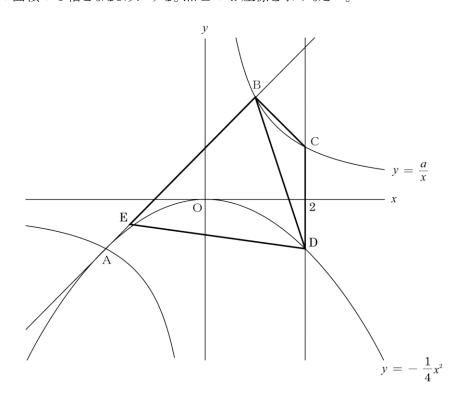
(大分県 2017年度)



問1 aの値を求めなさい。

問2 直線 AB の式を求めなさい。

問3 下の図のように、関数 $y=\frac{a}{x}$ のグラフ上に x 座標が 2 である点 C をとる。点 C を通り y 軸に平行な直線と関数 $y=-\frac{1}{4}x^2$ のグラフとの交点を D とする。線分 AB 上に点 E をとり、 $\triangle BED$ の面積が $\triangle BDC$ の面積の 5 倍となるようにする。点 E の x 座標を求めなさい。



問1	a=
問2	
問3	<i>x</i> 座標

```
解答
```

問1a=2

問2 y=x+1

問3 x座標 $-\frac{3}{2}$

解説

問1

点 A は関数
$$y=-\frac{1}{4}x^2$$
 のグラフ上にあり、その x 座標は -2 だから

$$y = -\frac{1}{4}x^2$$
 に $x = -2$ を代入して $y = -\frac{1}{4} \times (-2)^2 = -1$

よってA(-2, -1)

また点 A は関数 $y = \frac{a}{x}$ のグラフ上の点でもあるから

$$y = \frac{a}{x}$$
 に $x = -2$, $y = -1$ を代入して $a = 2$

問2

点 B は関数 $y=\frac{2}{x}$ のグラフ上にあり、その x 座標は 1 だから

$$y = \frac{2}{x}$$
 に $x = 1$ を代入して $y = \frac{2}{1} = 2$

よって B(1, 2)

直線 AB の傾きは $\frac{2-(-1)}{1-(-2)} = 1$ だから,

直線 AB の式を y=x+b として $x=1,\ y=2$ を代入すると 2=1+b b=1

よってy=x+1

問3

点 C を通り y 軸に平行な直線と直線 AB との交点を F とし $\triangle EDF$ の面積を利用して求める。

まず点 C, D, F の座標を求めると $y = \frac{2}{2} = 1$ より C(2, 1)

$$y = -\frac{1}{4} \times 2^2 \, \text{Ly D}(2, -1)$$

 $y=2+1 \ \text{$\downarrow$} 9 \ \text{$\text{F}(2, 3)$}$

となるから

$$DC = 1 - (-1) = 2$$

$$DF = 3 - (-1) = 4$$

ここで \triangle BDC の底辺を DC とすると, 高さは 2-1=1 で

 $\triangle BDC$ の面積は $\frac{1}{2} \times 2 \times 1 = 1$ となるから

 $\triangle BED = 5 \triangle BDC = 5 \times 1 = 5$

また、DC:DF=2:4=1:2 がいえるので

 $\triangle BDF = 2 \triangle BDC = 2 \times 1 = 2$

よって $\triangle EDF = \triangle BED + \triangle BDF = 5 + 2 = 7$ だから

点 \mathbf{E} の \mathbf{x} 座標の値を t とすると

 $\triangle EDF$ の面積の関係から $\frac{1}{2} \times 4 \times (2-t) = 7$

これを整理すると $t=-\frac{3}{2}$

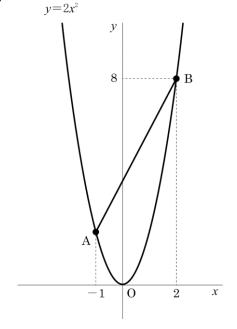
【問 34】

関数 $y=2x^2$ のグラフ上に 2 点 A, B がある。点 A の x 座標は-1, 点 B の座標は (2,8) である。

このとき、次の各問いに答えなさい。

(沖縄県 2017年度)

問1 関数 $y=2x^2$ のグラフと x 軸について対称であるグラフの式が $y=ax^2$ である。このとき,a の値を求めなさい。



問2 点 A の y 座標を求めなさい。

問3 直線 AB の式を求めなさい。

問4 関数 $y=2x^2$ のグラフ上の点で、2 点 O, B の間にある点 P をとると、 $\triangle PAB$ の面積は $\triangle OAB$ の面積に等しくなった。このとき、点 P の座標を求めなさい。ただし、点 P は、点 O とは異なるものとする。

問1	a=
問2	A(-1,)
問3	y=
問4	P(

```
解答
```

問1 a=-2

問2 A(-1, 2)

問3 y=2x+4

問4 P(1,2)

解説

問1

関数 $y=bx^2$ のグラフと関数 $y=-bx^2$ のグラフは x 軸について対称である。

よって関数 $y=2x^2$ のグラフと x 軸について対称であるグラフの式は $y=-2x^2$ である。

問2

点 A は関数 $y=2x^2$ のグラフ上にあり、その x 座標は-1 だから

 $y=2x^2$ に x=-1 を代入して $y=2\times(-1)^2=2$

よって点 Aの y 座標は2

問3

問2より A(-1, 2), B(2, 8) より

直線 AB の傾きは $\frac{8-2}{2-(-1)} = 2$ だから

直線 AB の式を y=2x+c として x=2, y=8 を代入すると $8=2\times 2+c$ c=4

したがって直線 AB の式は y=2x+4

問4

点 P の x 座標を $p(0 とすると <math>P(p, 2p^2)$

2 つの三角形に共通する辺 AB を底辺としたときの高さは等しくなるから OP // AB が成り立つ。 よって問3より直線 AB の傾きは 2 だから,直線 OP の傾きも 2 となる。

直線 OP の傾きは
$$\frac{2p^2-0}{p-0} = 2p$$
 だから

2p=2

p=1

この解は問題にあっている。

したがって p=1 のとき $2p^2=2\times 1^2=2$ だから

P(1, 2)