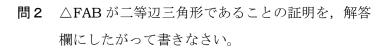
5. 合同・相似以外の証明・その他複合問題【2020年度出題】

【問1】

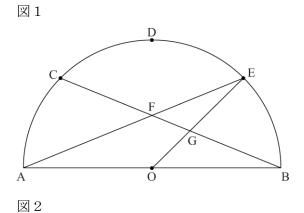
図1のように、点Oを中心とし、直径ABが8 cm である半円Oがあり、 \widehat{AB} を4等分する点C、D、E \widehat{EAB} 上にとる。線分CB と線分AE、OE との交点をそれぞれF、G とする。次の問1~問3 に答えなさい。

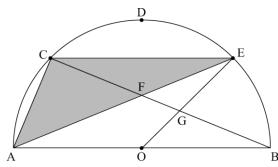
(秋田県 2020 年度)

問1 ∠AOGの大きさを求めなさい。



問3 図2は、**図1**に線分 CA、CE をかき加えたものである。このとき、△ACE の面積を求めなさい。





問 1	
問 2	〔証明〕△FAB において △FAB は二等辺三角形である。
問3	$ m cm^2$

```
解答
```

問 1 135 °

問 2

〔証明〕

△FAB において

仮定から、 $\widehat{AC} = \widehat{BE}$

等しい弧に対する円周角は等しいから、 ∠ABC=∠BAE

よって、∠ABF=∠BAF

したがって、2つの角が等しいから

△FAB は二等辺三角形である。

問38 cm²

解説

問 1

$$\angle AOG = \angle AOE = 180 \times \frac{3}{4} = 135(g)$$

問3

 $\widehat{\text{CDE}}$ は半円の弧の半分だから、 $\angle{\text{COE}}=90$ 度 $\triangle{\text{COE}}$ は辺の比が $1:1:\sqrt{2}$ の三角形だから、 $\widehat{\text{CE}}=4\sqrt{2}$ cm $\triangle{\text{CE}}$ の中点を M とすると、 $\widehat{\text{OM}}$ $\triangle{\text{CE}}$ だから、 $\widehat{\text{OM}}=\widehat{\text{CE}}\div 2=2\sqrt{2}$ (cm) $\triangle{\text{ACE}}=\widehat{\text{CE}}\times \widehat{\text{OM}}\div 2=4\sqrt{2}\times 2\sqrt{2}\div 2=8$ (cm²)

【問2】

図1のように、点Oを中心とし、直径ABが12 cm である半円Oがあり、 \widehat{AB} を6等分する点C、D、E、F、Gを \widehat{AB} 上にとる。線分DBと線分OGの交点をHとする。次の問1~問3に答えなさい。

(秋田県 2020 年度)

- 問1 △HOBが二等辺三角形であることの証明を、解答欄にしたがって書きなさい。
- 問2 線分 GH の長さを求めなさい。
- 問3 図2は、図1に線分AC、AD、AF、AGをかき加えたものである。このとき、 \widehat{CD} 、線分AC、ADによって囲まれた部分と、 \widehat{FG} 、線分AF、AGに

 \boxtimes 1 C A O B \boxtimes 2

よって囲まれた部分の面積の和を求めなさい。ただし円周率をπとする。

	〔証明〕 △HOB において	
問 1		
	△HOB は二等辺三角形である。	
問2	cm	
問3	cm ²	

問 1

〔証明〕

△HOB において

仮定から, $\widehat{\mathrm{BG}} = \frac{1}{6}\widehat{\mathrm{AB}}$

おうぎ形の弧の長さは中心角に比例するから

 $\angle BOG = \angle BOH = 30^{\circ} \cdots \textcircled{1}$

仮定から、 $\widehat{AD} = \frac{1}{3}\widehat{AB}$

おうぎ形の弧の長さは中心角に比例するから

 $\angle AOD = 60^{\circ}$

円周角の定理から

 $\angle ABD = \frac{1}{2} \angle AOD = \angle OBH = 30^{\circ} \cdots ②$

①, ②より, ∠BOH=∠OBH

したがって、2つの角が等しいから

△HOB は二等辺三角形である。

問 $26-2\sqrt{3}$ cm

問36π cm²

 $\widehat{\mathrm{GB}}$ は半円の弧の $\frac{1}{6}$ だから、 $\angle\mathrm{GOB} = 180 \div 6 = 30(度)$

 \triangle HOB は HO=HB の二等辺三角形だから,H と OB の 中点 M を結ぶと HM \bot OB となり, \triangle HOM は

 $HM:OH:OM=1:2:\sqrt{3}$ の直角三角形である。よって、

OM=OB÷2=3 (cm) OH= $\frac{2}{\sqrt{3}}$ OM= $2\sqrt{3}$ (cm) たから,

 $GH = OG - OH = (6 - 2\sqrt{3}) \text{ cm}$ 問 3

 \widehat{FGB} は、半円の弧の $\frac{1}{3}$ だから、

 $\angle FAB = \angle FOB \div 2 = 180 \div 3 \div 2 = 30$ (度)

問**2**より、 \angle GOB=30度 同位角が等しいから、FA//GO よって、 \triangle FAG= \triangle FAO→この時点で求める面積は図**3**

次に、 \widehat{ACD} 、 \widehat{FED} はともに半円の弧の $\frac{1}{3}$ だから、

 $\angle AOD = \angle FOD = 60$ 度 よって、 $\triangle AOD$ 、 $\triangle FOD$ はともに正三角形であり、四角形 ADFO はひし形である。

ひし形 $ADFO=2\triangle AOF=2\triangle AOD$ より,

 $\triangle AOF = \triangle AOD$

→この時点で求める面積は図4

さらに、 \widehat{AC} と弦 AC とで囲まれた部分の図形、

FGと弦 FG とで囲まれた部分の図形は合同だから、

FGと弦 FG とで囲まれた部分の図形をそのまま

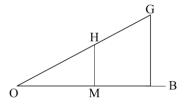
 $\widehat{\mathsf{AC}}$ と弦 AC とで囲まれた部分の図形に重ねることができる。

→この時点で求める面積は**図5**のおうぎ形

以上から, 求める図形の面積は,

おうぎ形 OAD の面積に等しくなる。

よって、おうぎ形 OAD= $6^2 \pi \div 6 = 6 \pi$ (cm²)



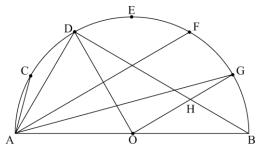


図3

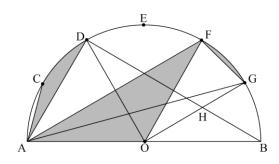


図4

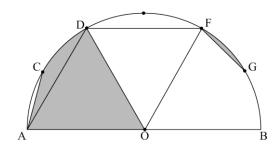
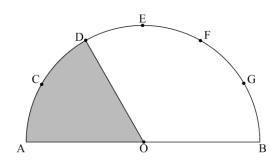


図 5

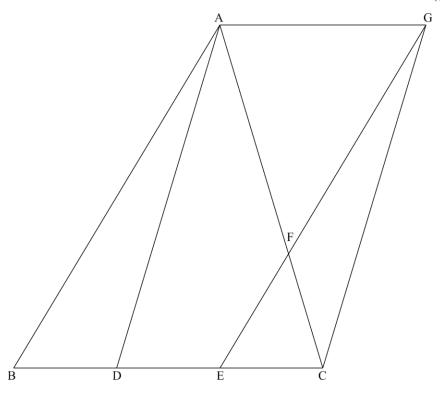


【問3】

下の図のように、 \triangle ABC の辺 BC 上に、BD=DE=EC となる 2 点 D、E をとる。E を通り辺 AB に平行な直線と辺 AC との交点を F とする。また、直線 EF 上に、EG=3EF となる点 G を直線 AC に対して E と反対側にとる。

このとき、四角形 ADCG は平行四辺形であることを証明しなさい。

(福島県 2020年度)



〔証明〕	

〔証明〕例1

 \triangle ABD \land \land GEC \land \land \land \land

仮定から BD=EC…①

仮定より, 平行線の同位角は等しいから

 $\angle ABD = \angle GEC \cdots \bigcirc \bigcirc$

AB // FE であるから、三角形と比の定理より

AB: FE=CB: CE=3:1 よって AB=3FE…③

仮定から GE=3FE…④

③, ④より AB=GE…⑤

①, ②, ⑤より, 2 組の辺とその間の角がそれぞれ等 しいから

 $\triangle ABD \equiv \triangle GEC$

したがって、AD=GC…⑥

また、∠BDA=∠ECGより、同位角が等しいからAD // GC…⑦

⑥, ⑦より, 1 組の対辺が平行でその長さが等しいから

四角形 ADCG は平行四辺形である。

〔証明〕例2

四角形 ABEG において

仮定から AB // GE…①

AB // FE であるから, 三角形と比の定理より

仮定から GE=3FE…③

②, ③より AB=GE…④

①, ④より, 1組の対辺が平行でその長さが等しいから

四角形 ABEG は平行四辺形である。

したがって, AG // BE から AG // DC…⑤

また, 平行四辺形の対辺は等しいから

 $AG = BE \cdots 6$

BD=DE=EC より BE=DC…⑦

⑥, ⑦より AG=DC…⑧

⑤, ⑧より, 1組の対辺が平行でその長さが等しいから

四角形 ADCG は平行四辺形である。

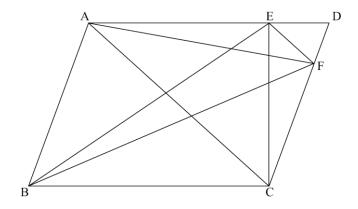
【問4】

右の図の平行四辺形 ABCD において、点 E、 F はそれぞれ辺 AD、 CD 上の点であり、AC // EF である。次の問 1 ~問 3 に答えなさい。

(群馬県 2020 年度 前期)

問1 三角形 ABC と三角形 EBC の面積が等しいことを次のように証明した。

ア , **イ** に適する記号をそれぞれ入れなさい。



証明

 \triangle ABC $\ge \triangle$ EBC について、 ≥ 0 もに底辺を BC ≥ 0 して考えると、 $\boxed{\textbf{7}}$ // $\boxed{\textbf{4}}$ より、高さが等しいといえる。したがって、底辺と高さがそれぞれ等しいので、 \triangle ABC $\ge \triangle$ EBC の面積は等しい。

- 問2 三角形 ADF と三角形 CDE の面積が等しいことを証明しなさい。
- 間3 平行四辺形 ABCD の面積を 96cm², AE: ED=3:1 とする。四角形 EBFD の面積を求めなさい。

問 1	ア		
	1		
	〔証明		
問2			
問3		cm^2	

問 1

アAD

イ BC

問2

〔証明〕

 \triangle ADF の面積は、 \triangle AEF の面積と \triangle DEF の面積の和に等しく、 \triangle CDE の面積は、 \triangle CEF の面積と \triangle DEF の面積の和に等しい。 \triangle AEF と \triangle CEF について、ともに底辺を EF として考えると、AC // EF より、高さが等しいといえる。よって、底辺と高さがそれぞれ等しいので、 \triangle AEF と \triangle CEF の面積は等しい。したがって、 \triangle DEF が共通で、 \triangle AEF と \triangle CEF の面積が等しいので、 \triangle ADF と \triangle CDE の面積は等しい。

問324 cm²

解説

問2

前設問である問1の考え方を利用する。

 \triangle ADF= \triangle AEF+ \triangle DEF, \triangle CDE= \triangle CEF+ \triangle DEF である。ここで \triangle AEF と \triangle CEF について,ともに底辺を EF として考えると,AC//EF より高さが等しいといえ, \triangle AEF= \triangle CEF である((1)の考え方)。その面積を S とすると, \triangle ADF=S+ \triangle DEF, \triangle CDE=S+ \triangle DEF となり, \triangle ADF= \triangle CDE となる。

問3

四角形 EBFD=平行四辺形 ABCD-△ABE-△BCF (…①式) と考える。

 \triangle ABE について、 \triangle ABD=96÷2=48cm²であり、AE:ED=3:1になるので、

 $\triangle ABE = \triangle ABD \times \frac{3}{3+1} = 48 \times \frac{3}{4} = 36 \text{cm}^2$ となる。 $\triangle BCF$ も同様に考える。仮定の AC//EF より CF : FD =

AE: ED=3:1となる。

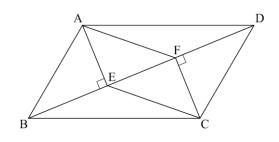
 $\triangle BCF = \triangle BCD \times \frac{3}{3+1} = 36cm^2$

よって、四角形 EBFD=96-36-36=24(cm²)

【問5】

右の図のように、平行四辺形 ABCD の頂点 A、C から対角線 BD に垂線をひき、対角線との交点をそれぞれ E、F とします。

このとき、四角形 AECF は平行四辺形であることを証明しなさい。



(埼玉県 2020 年度)

解答欄

(= + HH)

「証明」		

解答

[証明]

 \triangle ABE \triangle CDF において

仮定から ∠AEB= ∠CFD=90° ···①

平行四辺形の対辺はそれぞれ等しいので AB=CD…②

また, AB // DC から錯角は等しいので∠ABE=∠CDF…③

①, ②, ③から, \triangle ABE $\ge \triangle$ CDF は直角三角形で、斜辺 ≥ 1 つの鋭角がそれぞれ等しいので \triangle ABE $\equiv \triangle$ CDF

よって, AE=CF…④

また、 ∠AEF=∠CFE=90° から錯角が等しいので

AE // FC…⑤

④,⑤から,1組の対辺が平行でその長さが等しいので,四角形 AECF は平行四辺形である。解説

平行四辺形であることを証明するには、次の5つのうちどれか1つ証明できればよい。

「2組の向かいあう辺が、それぞれ平行であるとき」

「2組の向かいあう辺が、それぞれ等しいとき」

「2組の向かいあう角が、それぞれ等しいとき」

「対角線が、それぞれの中点で交わるとき」

「1組の向かいあう辺が、等しくて平行であるとき」

また、これらを証明するために、 $\triangle ABE$ と $\triangle CDF$ が合同であることを証明する必要がある。あることがらを証明するために、まず、三角形の合同を証明するパターンはよく出題される。

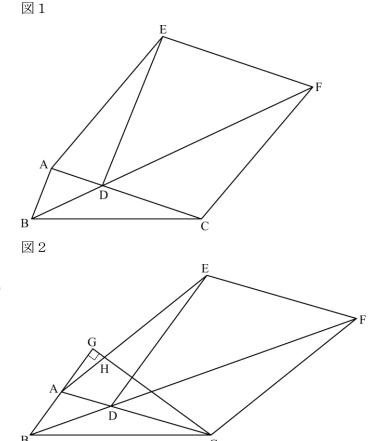
【問6】

図1,図2において、△ABCは内角∠BACが鈍角の三角形であり、AB<ACである。△DAE≡△ABCであり、Dは辺AC上にあって、Eは直線ACについてBと反対側にある。このとき、AB//EDである。BとDとを結ぶ。このとき、△ABDはAB=ADの二等辺三角形である。Fは、Eを通り辺ACに平行な直線と直線BDとの交点である。FとCとを結ぶ。

次の問いに答えなさい。

(大阪府 C 2020 年度)

問1 図1において、四角形 EACF は平行四辺形であることを証明しなさい。



- **問2 図2**において、AB=2 cm、AC=6 cm である。G は C から直線 AB にひいた垂線と直線 AB との交点であり、GA=2 cm である。H は、線分 GC と辺 EA との交点である。
 - (1) 辺BCの長さを求めなさい。
 - (2) 線分 EH の長さを求めなさい。
 - (3) 四角形 EHCF の面積を求めなさい。

	〔証明		
問 1			
問 2	(1)	cm	
	(2)	cm	
	(3)	cm^2	

問 1

〔証明〕

仮定より EF // AC…⑦

△ABD は AB=AD の二等辺三角形だから

 $\angle ABD = \angle ADB \cdots$

AB // ED であり、平行線の同位角は等しいから

 $\angle EDF = \angle ABD \cdots \bigcirc$

EF // AC であり、平行線の同位角は等しいから

 $\angle EFD = \angle ADB \cdots \textcircled{2}$

①, ⑤, 宝より ∠EDF=∠EFD

よって、△EDF は二等辺三角形だから

 $EF = ED \cdots \textcircled{3}$

△ABC≡△DAEだから CA=ED… 効

③, ③より EF=CA… ⑤

⑦, ⑤より, 1組の対辺が平行でその長さが等しいから, 四角形 EACF は平行四辺形である。

問 2

 $(1) 4\sqrt{3}$ cm

$$(2)\frac{14\sqrt{3}}{5}$$
 cm

$$(3)\frac{102\sqrt{2}}{5}$$
 cm²

解説

問2

(1)

 \triangle ACG において三平方の定理により、 $CG^2=AC^2-GA^2=6^2-2^2=32$

 $CG > 0 \downarrow \emptyset CG = 4\sqrt{2} (cm)$

 \triangle BCG において三平方の定理により,BC²=BG²+CG²=4²+(4 $\sqrt{2}$)²=48

BC>0 $\sharp \vartheta$ BC=4 $\sqrt{3}$ (cm)

(2)

線分 GC と線分 DE との交点を I とする。仮定より DI//AG だから $\triangle ACG$ において平行線と線分の比を考える(図 1)と、

AB=AD=2 (cm) $\sharp \emptyset$, $CD:CA=DI:AG \Rightarrow 4:6=DI:2$

$$\Rightarrow$$
 DI= $\frac{4}{3}$ (cm)

同様に AG//IE だから $\triangle AHG$ と $\triangle EHI$ において平行線と線分の比を考える(図2)と、 $\triangle DAE \equiv \triangle ABC$ から DE = AC = 6 (cm)より

 $AH : EH = AG : EI \Rightarrow AH : EH = 2 : \frac{14}{3} = 3 : 7$

$$\Rightarrow EH = \frac{7}{10}AE$$

$$\angle \angle \angle \neg$$
, AE=BC= $4\sqrt{3}$ (cm) ± 9 , EH= $\frac{7}{10} \times 4\sqrt{3} = \frac{14}{5} \sqrt{3}$ (cm)

(3)

(2) と同様にして、CI の長さを求める。まず \triangle ACG(図 1) において平行線と線分の比により

$$CD : CA = CI : CG \Rightarrow 4 : 6 = CI : 4\sqrt{2} \Rightarrow CI = \frac{8}{3}\sqrt{2} (cm)$$

$$\triangle CDE = \frac{1}{2} \times DE \times CI = \frac{1}{2} \times 6 \times \frac{8}{3} \sqrt{2} = 8\sqrt{2} (cm^2)$$

図3において、 △ADE: △CDE=AD: DC より

 $\triangle ADE : 8\sqrt{2} = 2 : 4 \Rightarrow \triangle ADE = 4\sqrt{2} (cm^2)$

よって、 $\triangle ACE = \triangle ADE + \triangle CDE = 12\sqrt{2}$ (cm²)

四角形 EACF は平行四辺形なので、 \triangle ACE= \triangle CEF= $12\sqrt{2}$ (cm²)

また、 \triangle CAH: \triangle CEH=AH: HE=3:7より

$$\triangle CEH = \frac{7}{10} \triangle ACE = \frac{42}{5} \sqrt{2} (cm^2)$$

よって,(四角形 EHCF)= \triangle CEH+ \triangle CEF= $\frac{42}{5}\sqrt{2}+12\sqrt{2}$

$$= \frac{102}{5} \sqrt{2} \, (\text{cm}^2)$$

図 1

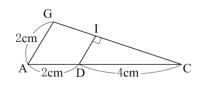


図 2

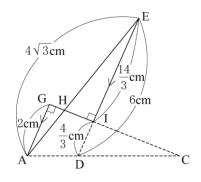
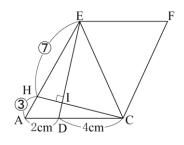


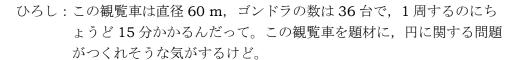
図3

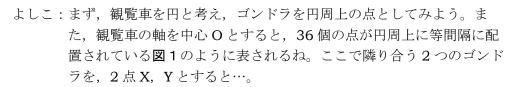


【問7】

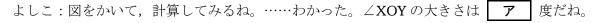
次の会話文は「課題学習」におけるグループ活動の一場面である。ひろしさん とよしこさんのグループは、**写真**の観覧車を題材に数学の問題をつくろうと考え た。以下の会話文を読んで、次の問1~問3に答えなさい。

(鹿児島県 2020 年度)





ひろし:まず,角の大きさが求められそうだね。 **ZXOY** の大きさはいくらかな。



ひろし: いいね。じゃあ点 O を対称の中心として,点 Y と点対称となるように点 Z をとるときを考えてみよう。このとき $\angle XZY$ の大きさはいくらかな。

よしこ:実際に図をかいて角の大きさを測ってみたら、さっきの ZXOY の半分になったよ。そういえば、1つの弧に対する円周角は、その弧に対する中心角の半分であるって習ったよね。

ひろし:つまり、式で表すと $\angle XZY = \frac{1}{2} \angle XOY$ となるんだね。

よしこ:面白いね。では次はどこか2つのゴンドラの距離を求めてみようよ。いま、最高地点にあるものをゴンドラ①、5分後に最高地点にあるものをゴンドラ②とする。この2つのゴンドラの距離を求めよ、なんてどうかな。さっきの図1だとどうなるかな。

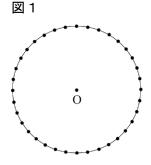
先生: ひろしさんとよしこさんのグループはどんな問題を考えましたか。なるほど、観覧車を円と考え、角の大きさや距離を求める問題ですね。答えも合っていますね。次はどんな問題を考えてみますか。

よしこ:はい。面積を求める問題を考えてみます。点Oを対称の中心として、ゴンドラ②と点対称の位置にあるゴンドラをゴンドラ③とするとき、ゴンドラ①、②、③で三角形ができるから…。

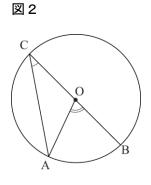
ひろし:せっかくだから観覧車の回転する特徴も問題に取り入れたいな。でもゴンドラが移動するとご ちゃごちゃしそうだし。先生、こんなときはどうしたらいいんですか。

先 生:図形の回転ですか。たとえば、ある瞬間のゴンドラ①の位置を点Pとし、t分後のゴンドラ① の位置を点P'とするなど、文字でおいてみてはどうですか。もちろん、観覧車は一定の速さで、一定の方向に回転していますね。

ひろし:わかりました。ゴンドラ②,③も同様に考えて、問題をつくってみます。



問1 ア , イ に適当な数を入れ、会話文を完成させよ。



問3 会話文中に出てきたゴンドラ①, ②, ③について, ひろしさんとよしこさんは次の問題をつくった。

ある瞬間のゴンドラ①,②,③の位置をそれぞれ点 P,Q,R とする。観覧車が回転し,ある瞬間から t 分後のゴンドラ①,②,③の位置をそれぞれ点 P',Q',R'とする。線分QR と P'R'が初めて平行になるとき,3 点 P,O,P'を結んでできる三角形の \angle POP'の大きさと t の値をそれぞれ求めよ。また,そのときの \triangle PP'Q の面積を求めよ。

この問題について,次の(1),(2)の問いに答えよ。

- (1) 3 点 P, O, P' を結んでできる三角形の $\angle POP'$ の大きさと t の値をそれぞれ求めよ。
- (2) $\triangle PP'Q$ の面積は何 m^2 か。

問 1	ア		
	1		
問 2	〔証明		
問3	(1)	度	
		t=	
	(2)	m^2	

```
解答
問 1
ア 10
イ 30√3
問2
〔証明〕
\triangleOAC は二等辺三角形であるから,
\angleOCA=\angleOAC=\angle a
\angleAOB は\triangleOAC の外角であるから,
\angle AOB = \angle OCA + \angle OAC = 2 \angle a
したがって、∠AOB=2∠ACB
すなわち、\angle ACB = \frac{1}{2} \angle AOB
問3
(1)
120 (度)
(t=)5
(2) 675\sqrt{3} (m<sup>2</sup>)
```

問 1

(1)

ゴンドラ①の位置を点 S, ゴンドラ②の位置を点 T とする。(図 3)中心 O から,線分 ST に垂線 OH をおろすと, $\triangle OHT$ は内角が 30° , 60° , 90° の辺の比が決まった直角三角形となる。 $OT: HT=2: \sqrt{3}$ であり, $HT=15\sqrt{3}$ となる。二等辺三角形の性質より ST=2HT であり,2 点間の距離は $30\sqrt{3}$ (m)

問3

(1)

ゴンドラは 1 周するのに 15 分かかり,Q は 5 分後に P の位置にいるため, \widehat{PQ} の長さは円周の $\frac{5}{15} = \frac{1}{3}$ (倍)であることがわかる。

よって、 $\angle QOP = \frac{1}{3} \times 360^{\circ} = 120^{\circ}$ であり、円周角の定理より、

$$\angle PRQ = \frac{1}{2} \angle QOP = 60^{\circ}$$
 つまり、 $\angle PR'Q' = \angle PRQ = 60^{\circ}$ … ① である。

Q と R は O に対して点対称なので、 QR は円 O の直径である。

よって、半円の弧に対する円周角は 90° だから、 $\angle QPR = 90^\circ$ であり、 $\triangle PQR$ の内角の和は 180° だから、

 $\angle PQR = 180^{\circ} - \angle PRQ - \angle QPR = 30^{\circ} \cdots ②$

QR // R'P'となるとき $(\mathbf{Z} \mathbf{A})$, 平行線における同位角と①より,

 $\angle P\hat{R}\hat{Q} = \angle ROQ\hat{E} = 60^{\circ}$ であり、円周角と中心角の関係性より

$$\angle RQQ' = \frac{1}{2} \angle ROQ' = 30^{\circ}$$
 である。よって、 $\angle PQR = \angle Q'QR = 30^{\circ}$

であることから、点 P と点 Q は一致するといえる。また、OP=OP より、 \triangle POP は二等辺三角形であり、 $\angle OPP'=\angle OP'P=30°$ だから、 $\angle POP'=180°$ $-\angle OPP'-\angle OP'P=120°$ である。また、ゴンドラが 120° 回転するのにかかる時間は t=5 (分)

(2)

同じ弧に対する円周角は等しいため、 $\angle P\hat{}$ $P = \angle P\hat{}$ $QP = 60^\circ$ である。さらに、 $\angle P\hat{}$ $PR' = 30^\circ$ で、 $\triangle OPQ$ が二等辺三角形で $\angle OPQ = 30^\circ$ なので、 $\angle P\hat{}$ $PQ = 60^\circ$ である。

よって、 $\triangle PP'Q$ は底角が 60° の二等辺三角形、つまり正三角形である(図 5)。 問 1 より、 $\triangle PP'Q$ の 1 辺の長さは $PQ=30\sqrt{3}$ (m) である。また、点 P から辺 QP'に垂線 PM をおろすと(図 6)、 $PP': PM=2:\sqrt{3}$ より、PM=45 (m) である。

したがって、 $\triangle PP'Q = \frac{1}{2} \times 30\sqrt{3} \times 45 = 675\sqrt{3}$ (m²)

