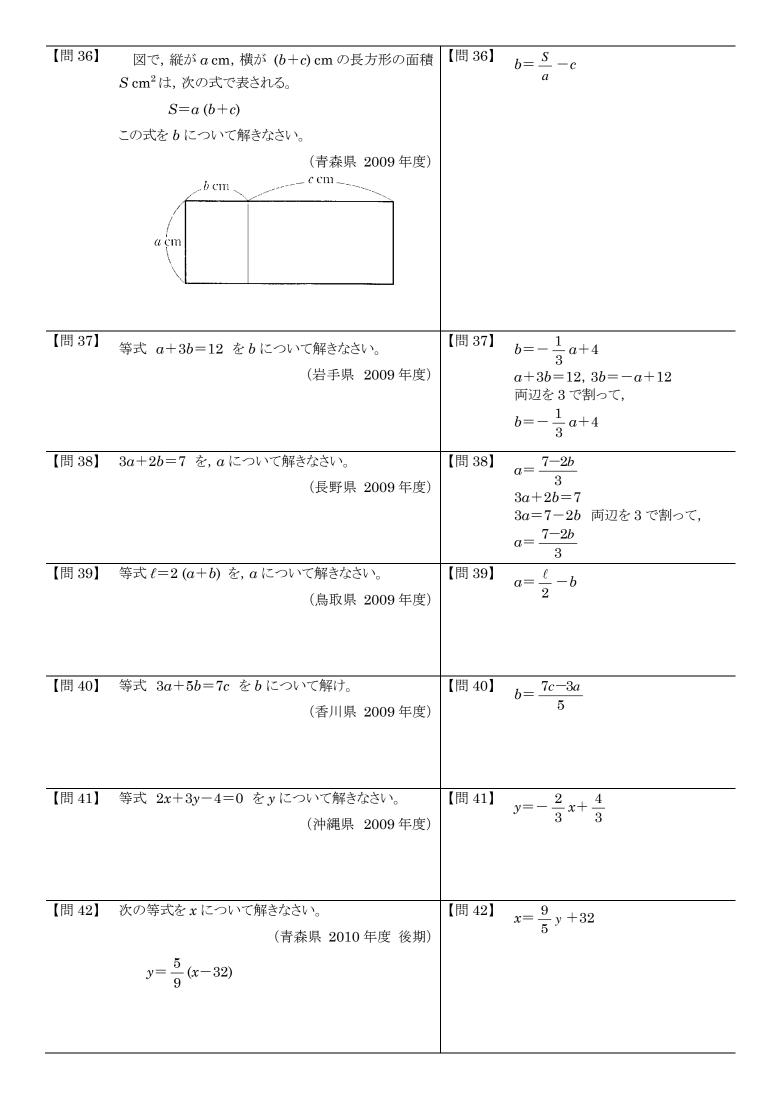
6.式の計算 等式の変形

1.等式の変形


	過去問	解答•解説
【問 1】	$m=rac{a+b+c}{3}$ の等式を a について解きなさい。 (青森県 2002 年度)	【問 1】 $a=3m-b-c$ $m=\frac{a+b+c}{3}$, $\frac{a+b+c}{3}=m$ 両辺に 3 をかけて, $a+b+c=3m$ $a=3m-b-c$
【問 2】	2a+b=c を a について解きなさい。 (栃木県 2002 年度)	【問 2】 $a = \frac{-b+c}{2}$ $2a = -b+c$ $a = \frac{-b+c}{2}$
【問 3】	二元一次方程式 $3x-2y=8$ を y について解きなさい。 (千葉県 2002 年度)	【問 3】 $y = \frac{3}{2}x - 4$ $3x - 2y = 8$ $3x$ を移項して, $-2y = -3x + 8$ 両辺を -2 でわって, $y = \frac{3}{2}x - 4$
【問 4】	等式 $3x-y=6$ を x について解きなさい。 (富山県 2002 年度)	【問 4】 $x=\frac{y+6}{3}$
【問 5】	$c=rac{1}{2}(a+3b)$ を a について解きなさい。 (岐阜県 2002 年度)	【問 5】 $a = 2c - 3b$ $c = \frac{1}{2}(a + 3b)$ $\frac{1}{2}(a + 3b) = c$ 両辺に 2 をかけて $a + 3b = 2c$ $a = 2c - 3b$
【問 6】	等式 ℓ=2πr+πa を, r について解きなさい。 (鳥取県 2002 年度)	【問 6】 $r = \frac{\ell - \pi a}{2\pi} $ または $\frac{\ell}{2\pi} - \frac{a}{2}$ $\ell = 2\pi r + \pi a $ $2\pi r + \pi a = \ell$ $2\pi r = \ell - \pi a$ $r = \frac{\ell - \pi a}{2\pi}$
【問 7】	-x+4y=8をy について解きなさい。 (沖縄県 2002年度)	【問 7】 $y = \frac{1}{4}x + 2$ $-x + 4y = 8$ $4y = x + 8$ $y = \frac{1}{4}x + 2$

【問8】 $m = \frac{1}{2} (a+b)$ を b について解け。	
$m = \frac{1}{2}(a+b)$	
(福井県 2003 年度) 両辺を入れ替えて2倍する。	노,
a+b=2m a を移項して	· •
b=2m-a	
【問 9】 $3a+2b=5$ を b について解きなさい。 【問 9】 $b=-3a+5$	
$b = \frac{1}{2}$	
(沖縄県 2003 年度) $3a+2b=5$	
2b = -3a + 5 b = -3a + 5	
$\theta = -3a + 5$	
【問 10】	
台形の面積 S cm ² は次の式で表される。 $h = \frac{2S}{a+b}$	
$S = \frac{(a+b)h}{2}$ $2S = (a+b)h$ $L = 2S$	
$n = \frac{a}{a+b}$	
この式を h について解きなさい。	
(青森県 2004 年度)	
a cm	
$h \operatorname{cm}$	
b cm	
【問 11】 $a-9b$	
$c=\frac{1}{2}$ を a について解ぎなさい。 $2c=a-9b$	
(栃木県 2004 年度) $a=9b+2c$	
【問 12】 $2x+3y=6$ を y について解きなさい。	
$y = -\frac{1}{2}x + 2$	
(長野県 2004 年度) $2x+3y=6$ $2x$ を右辺に移	
3y=-2x+6 両辺を 3 で	わって,
$y = -\frac{2}{3}x + 2$	
【問 13】 $4a-2b=10$ を b について解きなさい。 【問 13】 $b=2a-5$	
(三重県 2004年度)	
【問 14】 等式 $2a-b=5$ を b について解きなさい。	
(徳島県 2004 年度) $-b=-2a+5$ よって, $b=2a-5$	
z^{2}	

【問 15】	次の等式を y について解きなさい。 (大分県 2004年度) 2x-4y=3	【問 15】	$y = \frac{1}{2}x - \frac{3}{4}$
【問 16】	等式 $x-2y+2=0$ を y について解くと、 $y=$ である。 (沖縄県 2004年度)	【問 16】	$y = \frac{1}{2}x + 1$ $2y = x + 2$ $19, y = \frac{1}{2}x + 1$
【問 17】	等式 $V=\frac{1}{3}Sh$ を, h について解きなさい。 (富山県 2005 年度)	【問 17】	$h = \frac{3V}{S}$
【問 18】	等式 $c=rac{a-b}{2}$ を、 a について解きなさい。 (鳥取県 2005 年度)	【問 18】	$a=b+2c$ $c=\frac{a-b}{2}$ $2c=a-b$ $a=b+2c$
【問 19】	等式 $5a-2b=8$ を b について解け。 (香川県 2005 年度)	【問 19】	$b = \frac{5}{2}a - 4$ $5a - 2b = 8$ $-2b = -5a + 8$ $b = \frac{5}{2}a - 4$
【問 20】	等式 2x-7y=5 を y について解きなさい。 (沖縄県 2005 年度)	【問 20】	$y=\frac{2}{7}x-\frac{5}{7}$ $2x-7y=5$ $-7y=-2x+5$ 両辺を -7 でわって, $y=\frac{2}{7}x-\frac{5}{7}$
【問 21】	次の等式を b について解きなさい。 (青森県 2006年度) $m=\frac{a+3b}{4}$	【問 21】	$b = \frac{4m - a}{3}$
【問 22】	8a-b=c を a について解きなさい。 (栃木県 2006年度)	【問 22】	$a = \frac{b+c}{8}$

【問 23】	a=1	【問 23】	4 b+1 または 1+4 b
1,11,1	等式 $b = \frac{a-1}{4}$ を a について解くと,		
	a= である。		
	(福岡県 2006 年度)		
【問 24】	等式 $3x+5y-2=0$ を y について解くと, $y=$	【問 24】	$y = -\frac{3}{5}x + \frac{2}{5}$
	である。 (沖縄県 2006年度)		$y = \frac{-3x+2}{5}$, $y = -\frac{3x-2}{5}$
			5 5
【問 25】	$b=\frac{3a+1}{2}$ を a について解きなさい。	【問 25】	$a = \frac{2b-1}{3}$
	(茨城県 2007 年度)		3
【問 26】	M 1 (101) + 17 (101) - M7 + 1 + 1	【問 26】	a = -3b + 4c
	等式 $c=\frac{1}{4}$ $(a+3b)$ を a について解きなさい。		$c = \frac{1}{4}(a+3b)$ の両辺を 4 倍して、
	(千葉県 2007 年度)		4c=a+3b 左辺と右辺を入れかえ
			て、 $a+3b=4c$ 3b を移項して、 $a=-3b+4c$
【問 27】	3a-2b=8を b について解きなさい。	【問 27】	2
[H] 21]	(富山県 2007 年度)	TIHJ 211	$b = \frac{3}{2}a - 4$
【問 28】	$1+\frac{a}{3}=2b$ を a について解きなさい。	【問 28】	a = 6b - 3
	(長野県 2007 年度)		
	(区封州 2007 平度)		
【問 29】	1 0 h 1 c	【問 29】	y = 8x - 12
V1~1 ~0 I	等式 $4x - \frac{1}{2}y = 6$ を y について解きなさい。	1,1,1,20	, c <u></u>
	(徳島県 2007 年度)		

【問 30】	等式 $a=\frac{b-2c}{3}$ を b について解け。 (香川県 2007 年度)	【問 30】	$b=3a+2c$ $a=\frac{b-2c}{3}$, $\frac{b-2c}{3}=a$ 両辺を 3 倍して, $b-2c=3a$ $-2c$ を右辺に移項して, $b=3a+2c$
【問 31】	$c=rac{a-2b}{4}$ を b について解け。 (長崎県 2007 年度)		$b = \frac{a - 4c}{2}$
【問 32】	等式 $x-2y+$ $=0$ を y について解くと, $y=\frac{1}{2}x+3$ である。 (沖縄県 2007年度)	【問 32】	6
【問 33】	等式 $b=2a+5$ を a について解きなさい。 (新潟県 2008 年度)	【問 33】	$a = \frac{b-5}{2}$
【問 34】	$a=rac{5b+3c}{8}$ の等式を c について解きなさい。 (静岡県 2008年度)	【問 34】	$c = \frac{8a - 5b}{3}$
【問 35】	等式 2 <i>a</i> - <i>b</i> =7 を, <i>a</i> について解きなさい。 (山口県 2008 年度)	【問 35】	$a = \frac{b+7}{2}$

【問 43】	等式 $4x+2y=9$ を y について解きなさい。	【問 43】	9
[[4]	(岩手県 2010 年度)	101	$y = -2x + \frac{9}{2}$
	(石于宋 2010 千及)		
【問 44】	等式 $m = \frac{2a+b}{3}$ を, b について解きなさい。	【問 44】	b=3m-2a
	(秋田県 2010 年度)		
	(MH/K 2010 1/Z)		
	b =		
【問 45】	等式 $-10x+2y=1$ を y について解きなさい。	【問 45】	1
[h] 40]	(千葉県 2010 年度)	[hi 40]	$y = 5x + \frac{1}{2}$
	(「未來 2010 千及)		
【問 46】	$\ell = 2\pi r$ を、 r について解きなさい。	【問 46】	$r=rac{\ell}{2\pi}$
	(長野県 2010 年度)		<i>2)</i> t
	r=		
	,		
【問 47】	等式 $1.25a+0.25b=0.5$ を b について解きなさ	【問 47】	b = -5a + 2
	い。 (大阪府 2010 年度 後期)		
	()(()()() 2010 (2 (2)/9))		
	b=		
【問 48】	3a+b	【問 48】	2c-b
_,,	$c = \frac{3a+b}{2}$ を a について解くと、		$a = \frac{2c - b}{3}$
	<i>a</i> = である。		
	(島根県 2010年度)		
	~=		
	a=		
【問 49】	等式 $V=\pi r^2h$ を h について解きなさい。	【問 49】	$h = \frac{V}{\pi r^2}$
	(徳島県 2010年度)		πr^2

【問 50】	等式 $5x+4y-3=0$ を y について解くと、 $y=$	【問 50】	$y = -\frac{5}{4}x + \frac{3}{4}$
	y=		
【問 51】	次の等式を a について解きなさい。 (青森 2011 年度県 後期) $\ell=2a+2b$	【問 51】	$a = \frac{\ell - 2b}{2}$
【問 52】	等式 3a-2b=6 を b について解きなさい。 (岩手県 2011年度)	【問 52】	$b = \frac{3}{2} a - 3$
【問 53】	等式 $m=\frac{4a+3b}{7}$ を、 a について解きなさい。 (秋田県 2011年度) $a=$	【問 53】	$a = \frac{7m - 3b}{4}$
【問 54】	等式 $S=\frac{3(a+b)}{2}$ を a について解きなさい。 (千葉県 2011 年度 前期)	【問 54】	$a = \frac{2}{3}S - b$ $S = \frac{3(a+b)}{2}$ の両辺を 2 倍して、2S $= 3(a+b)$ 左辺と右辺を入れかえ て、 $3(a+b) = 2S$ 両辺を 3 でわっ て、 $a+b = \frac{2S}{3}$ b を移項して、 $a = \frac{2S}{3} - b$
【問 55】	2x-y=9 を y について解きなさい。 (岐阜県 2011年度) y=	【問 55】	y=2x-9 2x-y=9 $2x$ を移項して、 -y=-2x+9 両辺を -1 でわって、 y=2x-9
【問 56】	等式 $y=2-\frac{x}{3}$ を x について解け。 (香川県 2011年度)	【問 56】	x=6-3y
	x=		

【問 57】	等式 $c = \frac{3a+2b}{5}$ を a について解け。	【問 57】	$a = \frac{-2b + 5c}{3}$
	(高知県 2011 年度 後期)		$c=rac{3a+2b}{5}$ 両辺を 5 倍して,
			5 $5c=3a+2b$ 左辺と右辺を入れか
			えて、 $3a+2b=5c$ 左辺を a の項だけにして、 $3a=5c-2b$ 両辺を 3 で
【問 58】	等式 2x+5y-3=0 を y について解くと,	【問 58】	割って、 $a = \frac{5c - 2b}{3}$ $y = \frac{-2x + 3}{5}$
2, 7 - 2	y =	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$y = \frac{1}{5}$
	(沖縄県 2011 年度)		
	y=		
[HH FO]		THE FOL	
【問 59】	次の等式を c について解きなさい。 (青森県 2012 年度 前期)	【简 59】	c=4m-2a-b
	$m = \frac{2a + b + c}{4}$		
	4		
Fee		F	
【問 60】	次の等式を a について解きなさい。 (青森県 2012 年度 後期)	【問 60】	$a = \frac{c - 4b}{5}$
	c=5a+4b		
【問 61】	等式 $x-4y-12=0$ を y について解きなさい。	【問 61】	$y = \frac{1}{4}x - 3$
	(岩手県 2012年度)		$ \begin{array}{c} 4 \\ x - 4y - 12 = 0 \end{array} $
			左辺を y の項のみにして, -4y=-x+12
			有 で カップ $y = \frac{1}{4}x - 3$
【問 62】	b o o o o o o o o o o o o o o o o o o o	【問 62】	b = -3a + 6c
<u>-</u>	等式 $a+\frac{b}{3}=2c$ を, b について解きなさい。		
	(秋田県 2012年度)		
	b=		

【問 63】	3a-b=4c を a について解きなさい。	【問 63】	$(a=)\frac{b+4c}{3}$
	(栃木県 2012年度)		3
	a=		
	and the second s	FRR V	
【問 64】	2a+3b=5 を b について解きなさい。	【問 64】	$b = \frac{-2a+5}{3}$
	(鳥取県 2012 年度)		3
THE OF		THE OF 1	~-9h 15
【問 65】	等式 $\frac{1}{3}a+5=b$ を a について解け。	【問 65】	a = 3b - 15
	(高知県 2012 年度 前期)		
【問 66】	次の等式を, c について解きなさい。	【問 66】	$c = \frac{-3a+b}{2}$
	(大分県 2012年度)		2
	$a = \frac{b-2c}{3}$		
	3		
	c =		
【問 67】	10a-b	【問 67】	b = 10a - 9c
	等式 $c = \frac{10a-b}{9}$ を b について解け。		
	(鹿児島県 2012年度)		$c = \frac{10a - b}{9}$ 左右を入れかえて、
			10a-b
			$\frac{10a-b}{9} = c $ 両辺に 9 をかけて、
			10a-b=9c $10a$ を移項して、
			-b = 9c - 10a
			両辺を-1 でわって,
		1	,

b = -9c + 10a b = 10a - 9c

次の問題を考えます。

(北海道 2013 年度)

(問題)

x=3, y=5 のとき,式 $(x^2+xy+y^2)-(x^2-2xy+y^2)$ の値を求めなさい。

この問題の式の値を次のような2つの解き方で求めるとき、アー~ ウーに当てはまる数を、

エ に当てはまる単項式を、それぞれ書きなさい。

(解き方 1)

(考え方)

かっこの中の式それぞれに、x=3, y=5 を代入して計算し、2 つの式の値の差を求めて解く。

(解答)

 $x^2+xy+y^2\cdots$ ①, $x^2-2xy+y^2\cdots$ ② それぞれに, x=3, y=5 を代入して計算すると, ①の式の値は T , ②の式の値は T となる。①の式の値から②の式の値をひくと, この問題の式の値は T となる。

(解き方 2)

(考え方)

かっこをはずし、同類項をまとめた式に、x=3、y=5を代入して解く。

(解答)

 $(x^2+xy+y^2)-(x^2-2xy+y^2)$ のかっこをはずし、同類項をまとめた式である \Box に、 $x=3,\ y=5$ を代入すると、この問題の式の値は \Box となる。

解答欄

ア	
イ	
ウ	
工	

解答

解説

$$x^{2} + xy + y^{2} = 3^{2} + 3 \times 5 + 5^{2} = 9 + 15 + 25 = 49 \cdots (7)$$

$$x^{2} - 2xy + y^{2} = 3^{2} - 2 \times 3 \times 5 + 5^{2} = 9 - 30 + 25 = 4 \cdots (1)$$

$$49 - 4 = 45 \cdots (\rlap{r})$$

$$(x^{2} + xy + y^{2}) - (x^{2} - 2xy + y^{2}) = x^{2} + xy + y^{2} - x^{2} + 2xy - y^{2} = 3xy \cdots (x)$$

$$3xy = 3 \times 3 \times 5 = 45 \cdots (\rlap{r})$$

		1	
【問 69】	次の等式を b について解きなさい。 (青森県 2013 年度 後期) 2a+3b=5	【問 69】	$b = \frac{-2a+5}{3}$ $2a+3b=5$ $3b=-2a+5$ $b = \frac{-2a+5}{3}$
【問 70】	等式 5a+4b=8 を b について解きなさい。 (岩手県 2013 年度)	【問 70】	$b=-rac{5}{4}a+2$ $5a+4b=8$ $5a$ を移項して $4b=-5a+8$ 両辺を 4 で割って $b=-rac{5}{4}a+2$
【問 71】	等式 6a-3b=12 を b について解きなさい。 (宮城県 2013 年度 前期)	【問 71】	b=2a-46a-3b=12-3b=-6a+12b=2a-4
【問 72】	等式 $b=\frac{a+4c}{2}$ を, a について解きなさい。 (秋田県 2013 年度)	【問 72】	$a=2b-4c$ $b=\frac{a+4c}{2}$ $2b=a+4c$ $a+4c=2b$ $a=2b-4c$
【問 73】	等式 3x-4y=12をy について解きなさい。 (大阪府 2013年度 前期)	【問 73】	$y = \frac{3}{4}x - 3$ $3x - 4y = 12$ $-4y = -3x + 12$ $y = \frac{3}{4}x - 3$

【問 74】	x-6y+18=0 を y について解きなさい。	【問 74】	$y = \frac{x+18}{6}$
	(鳥取県 2013 年度)		x - 6y + 18 = 0
			6y = x + 18
			$y = \frac{x+18}{6}$
【問 75】	等式 $3a+4b=12$ を b について解け。	【問 75】	$b = \frac{12 - 3a}{4}$
	(香川県 2013年度)		$4 \\ 3a+4b=12$
			4b = 12 - 3a
			$b = \frac{12 - 3a}{4}$
			4
【問 76】	h	【問 76】	b=5a+10
	等式 $\frac{b}{5}$ $-2=a$ を, b について解きなさい。		$\frac{b}{5} - 2 = a$
	(秋田県 2014年度)		
			$\frac{b}{5} = a + 2$
			b = 5a + 10
	b=		
[88.55]			
【問 77】	等式 $5x+3y-6=0$ を y について解きなさい。	【問 77】	$y = -\frac{5}{3}x + 2$
【問 77】		【問 77】	5x+3y-6=0 移項して、
【問 77】	等式 $5x+3y-6=0$ を y について解きなさい。	【問 77】	5x+3y-6=0 移項して、 3y=-5x+6 両辺を3で割って、
	等式 $5x+3y-6=0$ を y について解きなさい。		5x+3y-6=0 移項して、
【問 77】	等式 $5x+3y-6=0$ を y について解きなさい。	【問 77】	5x+3y-6=0 移項して、 3y=-5x+6 両辺を3で割って、 $y=-\frac{5}{3}x+2$
	等式 5x+3y-6=0 を y について解きなさい。 (福島県 2014年度)		5x+3y-6=0 移項して、 3y=-5x+6 両辺を3で割って、 $y=-\frac{5}{3}x+2$ $h=\frac{3V}{\pi r^2}$
	等式 $5x+3y-6=0$ を y について解きなさい。 (福島県 2014年度) $V=\frac{1}{3}mr^2h を h$ について解きなさい。		5x+3y-6=0 移項して、 3y=-5x+6 両辺を3で割って、 $y=-\frac{5}{3}x+2$ $h=\frac{3V}{\pi r^2}$ $V=\frac{1}{3}\pi r^2 h$
	等式 $5x+3y-6=0$ を y について解きなさい。 (福島県 2014年度) $V=\frac{1}{3}m^2h を h$ について解きなさい。 (鳥取県 2014年度)		5x+3y-6=0 移項して、 3y=-5x+6 両辺を 3 で割って、 $y=-\frac{5}{3}x+2$ $h=\frac{3V}{\pi r^2}$ $V=\frac{1}{3}\pi r^2h$ $\frac{1}{3}\pi r^2h=V$
	等式 $5x+3y-6=0$ を y について解きなさい。 (福島県 2014年度) $V=\frac{1}{3}mr^2h を h$ について解きなさい。		5x+3y-6=0 移項して、 3y=-5x+6 両辺を 3 で割って、 $y=-\frac{5}{3}x+2$ $h=\frac{3V}{\pi r^2}$ $V=\frac{1}{3}\pi r^2h$ $\frac{1}{3}\pi r^2h=V$
	等式 $5x+3y-6=0$ を y について解きなさい。 (福島県 2014年度) $V=\frac{1}{3}m^2h を h$ について解きなさい。 (鳥取県 2014年度)		5x+3y-6=0 移項して、 3y=-5x+6 両辺を 3 で割って、 $y=-\frac{5}{3}x+2$ $h=\frac{3V}{\pi r^2}$ $V=\frac{1}{3}\pi r^2h$ $\frac{1}{3}\pi r^2h=V$ $\pi r^2h=3V h=\frac{3V}{\pi r^2}$
【問 78】	等式 $5x+3y-6=0$ を y について解きなさい。 (福島県 2014 年度) $V=\frac{1}{3}mr^2h を h$ について解きなさい。 (鳥取県 2014 年度) $h=$	【問 78】	5x+3y-6=0 移項して、 3y=-5x+6 両辺を 3 で割って、 $y=-\frac{5}{3}x+2$ $h=\frac{3V}{\pi r^2}$ $V=\frac{1}{3}\pi r^2h$ $\frac{1}{3}\pi r^2h=V$
【問 78】	等式 $5x+3y-6=0$ を y について解きなさい。 (福島県 2014 年度) $V=\frac{1}{3} mr^2 h \ e \ h$ について解きなさい。 (鳥取県 2014 年度) $h=$ 等式 $4a+3b=17$ を b について解け。	【問 78】	5x+3y-6=0 移項して、 3y=-5x+6 両辺を 3 で割って、 $y=-\frac{5}{3}x+2$ $h=\frac{3V}{\pi r^2}$ $V=\frac{1}{3}\pi r^2h$ $\frac{1}{3}\pi r^2h=V$ $\pi r^2h=3V h=\frac{3V}{\pi r^2}$ $b=\frac{-4a+17}{3}$ $4a+3b=17$ $3b=-4a+17$
【問 78】	等式 $5x+3y-6=0$ を y について解きなさい。 (福島県 2014 年度) $V=\frac{1}{3} mr^2 h \ e \ h$ について解きなさい。 (鳥取県 2014 年度) $h=$ 等式 $4a+3b=17$ を b について解け。	【問 78】	5x+3y-6=0 移項して、 3y=-5x+6 両辺を 3 で割って、 $y=-\frac{5}{3}x+2$ $h = \frac{3V}{\pi r^2}$ $V = \frac{1}{3}\pi r^2 h$ $\frac{1}{3}\pi r^2 h = V$ $\pi r^2 h = 3V h = \frac{3V}{\pi r^2}$ $b = \frac{-4a+17}{3}$ $4a+3b=17$

【問 80】	次の等式を c について解きなさい。	【問 80】	c=2a-b
	(青森県 2015 年度)		$a = \frac{b+c}{2}$
	$a = \frac{b+c}{2}$		$\frac{b+c}{2} = a$
	2		b+c=2a
			c=2a-b
【問 81】	2a-8b+10=0 を a について解きなさい。	【問 81】	a=4b-5 $2a-8b+10=0$ a の項以外を右辺
	(宮城県 2015 年度 後期)		へ移項して、 $2a=8b-10$ 両辺を 2 で割って、 $a=4b-5$
【問 82】	3a+b=10 を a について解きなさい。	【問 82】	$a = \frac{10 - b}{3}$
	(茨城県 2015 年度)		3a+b=10 a について解くので、
			b の項を右辺に移項して, $3a=10-b$ 両辺を 3 で割って,
	a=		$a = \frac{10 - b}{3}$
THE ON	Q. F ロナフロンでATIセムシン	THE ON	
【問 83】	2x-5y=7 を x について解きなさい。 (栃木県 2015 年度)	【問 83】	$x = \frac{5y + 7}{2}$
	(栃木県 2013 年度)		2x - 5y = 7
			-5y を移項して、 $2x=5y+7$ また。 $2x=5y+7$
	x=		両辺を 2 で割って, $x = \frac{5y+7}{2}$
【問 84】	等式 $2a-3b=1$ を b について解きなさい。	【問 84】	$b = \frac{2}{3} a - \frac{1}{3}$
	(千葉県 2015 年度 前期)		$ \begin{array}{ccccccccccccccccccccccccccccccccc$
			b の項以外を右辺へ移項して, $-3b=-2a+1$
			両辺を -3 で割って, $b=\frac{2}{3}a-\frac{1}{3}$
【問 85】	12x-3y-11=0 を y について解きなさい。	【問 85】	$y = \frac{12x - 11}{3}$
	(鳥取県 2015年度)		$ \begin{array}{c} 3 \\ 12x - 3y - 11 = 0 \end{array} $
			-3y = -12x + 11
	y=		両辺を -3 で割って, $y = \frac{12x-11}{3}$
【問 86】	等式 $6a-3b=1$ を b について解きなさい。	【問 86】	$b=2a-\frac{1}{3}$
	(徳島県 2016年度)		0
			$6a - 3b = 1$ $b = 2a - \frac{1}{3}$

【問 87】	等式 $5x-y=2$ を y について解け。 (高知県 2016 年度)	【問 87】	y=5x-2 $5x-y=2$ ± 9 $y=5x-2$
【問 88】	等式 12x+3y=11 を y について解きなさい。 (佐賀県 2016 年度 特色)	【問 88】	$y = -4x + \frac{11}{3}$ $12x + 3y = 11$ $3y = -12x + 11$ $y = -4x + \frac{11}{3}$
【問 89】	次の等式を a について解きなさい。 (青森県 2017年度) $c = \frac{1}{3} ab$	【問 89】	$a = \frac{3c}{b}$ $c = \frac{1}{3}ab \frac{1}{3}ab = c ab = 3c a = \frac{3c}{b}$
【問 90】	$y=rac{x-7}{5}$ を x について解きなさい。 (栃木県 2017年度)	【問 90】	$x=5y+7$ $y=\frac{x-7}{5}$ 右辺と左辺を入れかえ, 両辺に 5 をかけると, $x-7=5y$ -7 を右辺に移項して, $x=5y+7$
【問 91】	等式 $\ell = 2(a+b)$ を, b について解きなさい。 (埼玉県 2017年度) b=	【問 91】	$b=rac{\ell}{2}-a$ $\ell=2(a+b)$ 右辺と左辺を入れかえ て,両辺を 2 でわると, $a+b=rac{\ell}{2}$ a を右辺に移項して, $b=rac{\ell}{2}-a$
【問 92】	等式 $4x-3y=15$ を y について解きなさい。 (千葉県 2017 年度 前期)	【問 92】	$y = \frac{4}{3}x - 5$ 4x - 3y = 15 $4x$ を右辺に移項して、 -3y = -4x + 15 両辺を -3 で割る と、 $y = \frac{4}{3}x - 5$
【問 93】	等式 $3x+2y=11$ を y について解きなさい。 (三重県 2017 年度) $y=$	【問 93】	$y=-\frac{3}{2}x+\frac{11}{2}$ 3x+2y=11 $3x$ を右辺に移項して、 2y=11-3x 両辺を2でわって、 $y=\frac{11}{2}-\frac{3}{2}x=-\frac{3}{2}x+\frac{11}{2}$

【問 94】	等式 $b=\frac{2a+7}{3}$ を a について解きなさい。	【問 94】	$a = \frac{3b - 7}{2}$
	(大阪府 2017年度 B)		右辺と左辺を入れかえ,両辺に 3 をかけると, $2a+7=3b$ 7 を右辺に移項させると, $2a=3b-7$
	a=		両辺を 2 で割ると, $a = \frac{3b-7}{2}$
【問 95】	等式 $S = \frac{1}{2} ah$ を h について解きなさい。	【問 95】	$h = \frac{2S}{a}$
	(鳥取県 2017年度)		与式の右辺と左辺を入れかえ、両辺に 2 をかけると、 $ah=2S$ 両辺を a で割ると、 $h=\frac{2S}{a}$
	h =		て討ると、 $n-\frac{a}{a}$
【問 96】	等式 $2a+3b=6c$ を b について解きなさい。 (島根県 2017年度)	【問 96】	$b=\frac{6c-2a}{3}$ 2a+3b=6c $2a$ を右辺に移項する と、 $3b=6c-2a$ 両辺を3で割ると、 a=6c-2a
	b =		$b = \frac{6c - 2a}{3}$
【問 97】	等式 $3a+5b=1$ を b について解け。 (香川県 2017年度) b=	【問 97】	$b = \frac{1-3a}{5}$ 与式の $3a$ を右辺に移項して, $5b=1$ $-3a$ 両辺を 5 で割って, $b = \frac{1-3a}{5}$
【問 98】	等式 3x-y+6=0 を y について解くと, y= である。 (沖縄県 2017 年度)	【問 98】	y=3x+6 3x-y+6=0 -y を左辺に移項し、両辺を入れか えると、 $y=3x+6$

【問 99】

等式 $m = \frac{-2a+b}{3}$ を a について次のように解いた。

$$m = \frac{-2a+b}{3} \qquad \cdots \qquad \mathbf{1}$$

$$3m = -2a+b \qquad \cdots \qquad \mathbf{2}$$

$$2a+3m = b \qquad \cdots \qquad \mathbf{3}$$

$$2a = b+3m \qquad \cdots \qquad \mathbf{4}$$

$$a = \frac{b+3m}{2} \qquad \cdots \qquad \mathbf{5}$$

上の解き方には、等式の性質にもとづいて正しく変形されていない式の変形がある。その式の変形を、次のア〜 エから1つ選び、記号を書きなさい。また、a について正しく解きなさい。

(長野県 2017年度)

解答欄

解答

ゥ

$$a = \frac{b - 3m}{2}$$

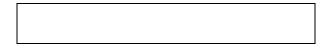
解訪

式1から式2への変形では、両辺に3をかけている。

式2から式3への変形では、両辺に 2a をたしている。

式3から式4への変形では、左辺から 3m をひいているが、右辺は 3m をたしており、正しく変形されていない。

式4から式6への変形では、両辺を2でわっている。


式**4**の右辺は b-3m が正しいので、式**5**の右辺は $\frac{b-3m}{2}$ が正しい。

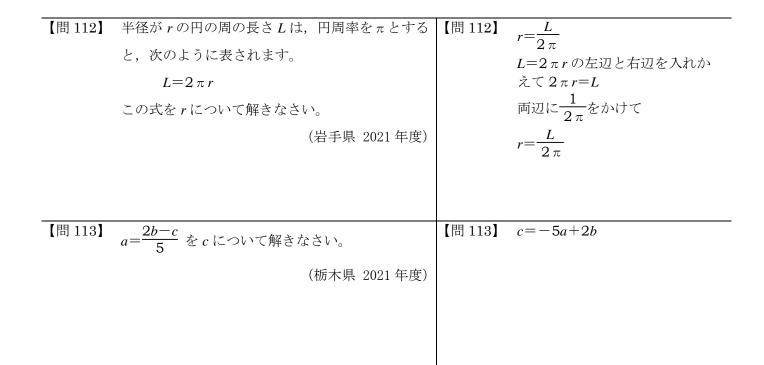
【問 100】

半径 r cm, 弧の長さ ℓ cm のおうぎ形がある。このおうぎ形の面積 S cm 2 は, $S=\frac{1}{2}$ ℓ r と表される。この式 $S=\frac{1}{2}$ ℓ r を ℓ について解け。

(高知県 2017年度)

解答欄

解答


$$\ell = \frac{2S}{r}$$

鱼军部

$$S = \frac{1}{2} \; \ell \, r \;$$
 両辺に $2 \, を$ かけて、入れかえると、 $\ell = \frac{2S}{r}$

$\frac{-2b+7c}{5}$
2b = 7c $7c - 2b$
$\frac{-2b+7c}{5}$
m-2a 2 <u>a+b</u> 3 と右辺を入れかえて
$egin{array}{l} b = m \\ \mathbb{Z} & 3 & \delta \end{pmatrix}$ に $3 & \delta \end{pmatrix}$ がけて $b = 3m$ 移項して $m - 2a$
<u>a-c</u> 3 と右辺を入れかえて
$\frac{c}{c} = a$ $c = 2e$ かけて $c = 2a$ $c = 3$ $c = 2a - c$ $c = 3$ でわって $c = a - c$
<u>V</u> Sh の左辺と右辺を入れ替え
$=V$ を 3 倍して $Sh=3V$ を S でわって $h=\frac{3V}{S}$
$b = \frac{-9a + 2}{3}$ $3b = 2$ $2 - 9a$ $-9a + 2$ 3

【問 106】	等式 $V=\pi r^2h$ を、 h について解きなさい。	【問 106】	$h = \frac{V}{\pi r^2}$
	(鳥取県 2019 年度)		$\pi r^ V = \pi r^2 h$
			$\pi r^2 h = V$
			$h = \frac{V}{\pi r^2}$
	h=		7. 7-
【問 107】	等式 $a=2(b+c)$ を c について解きなさい。	【問 107】	a
	·	[[[]]]	$c = \frac{a}{2} - b$
	(佐賀県 2019 年度 特色)		a=2(b+c)の左辺と右辺を入れか
			えて、両辺を 2 で割ると、 $b+c=a$
			$\frac{a}{2}$ $c=\frac{a}{2}-b$
【問 108】	等式 $S=\frac{1}{2}(a+b)h$ を a について解け。	【問 108】	$a = \frac{2S}{h} - b$
	(長崎県 2019 年度)		$S = \frac{1}{2}(a+b)h$ 左辺と右辺を入れ
			替えて、 $\frac{1}{2}(a+b)h=S$ $(a+b)h=$
			$2S a+b=\frac{2S}{h} a=\frac{2S}{h}-b$
	a=		2S u + v = h u = h v
【問 109】	4x+2y=6 をyについて解きなさい。	【問 109】	y = -2x + 3
	(岐阜県 2020 年度)		
【問 110】	等式 $2a+3b=1$ を、 a について解け。	【問 110】	$\frac{1-3h}{1-3h}$
[14] 110]	(福岡県 2020 年度)	() TIO	$a = \frac{1 - 3b}{2}$
	(田門外 2020 十次)		
For	all a life (S.)	FDD	
【問 111】	次の等式を r について解きなさい。	【問 111】	$r=\frac{\varrho}{2\pi}$
	$\ell = 2 \pi r$		
	(青森県 2021 年度)		

【問 114】

等式 $\frac{3a-5}{2}=b$ は、ノートのように、a について解く $\frac{3a-5}{2} = b \cdots \textcircled{1}$ ことができる。ノートには、等式の性質「等式の両辺に $3a - 5 = 2b \cdot \cdot \cdot \cdot 2$ 同じ数をたしても、等式が成り立つ」にもとづいて行わ $3a = 2b + 5 \cdots (3)$ れている式の変形がある。その式の変形を、次の $\mathbf{7}$ ~ウ $a=\frac{2b+5}{3}$ …④ から1つ選び、記号を書きなさい。

(長野県 2021 年度)

- ア式①から式②への変形イ式②から式③への変形ウ式③から式④への変形

解答欄

解答

a+b=c を a=c-b と変形するなどの「移項」という操作は、 a+b=c の両辺に-b をたして、 a+b-b=c-b, a=c-b としていると考えることができる。

【問 115】	等式 4x+3y-8=0 を y について解きなさい。 (和歌山県 2021 年度)	【問 115】	$y = -\frac{4}{3}x + \frac{8}{3}$
【問 116】	等式 3(4x-y)=6 を y について解け。 (香川県 2021 年度)	【問 116】	y=4x-2