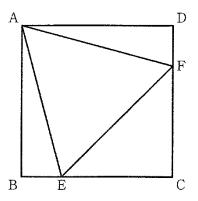
3. 合同の証明と長さ・求積などの複合問題 【2012 年度出題】

【問 1】

右の図の正方形 ABCD で、 \triangle AEF が正三角形となるように、点 E を辺 BC 上に、点 F を辺 CD 上にとる。次の(1)、(2)に答えなさい。

(青森県 2012年度 後期)

(1) \triangle ABE $b\triangle$ ADF が合同になることを証明しなさい。



(2) AB=2 cm のとき, BE の長さを求めなさい。

	〔証明〕	
(1)		
(2)	cm	

(1)

〔証明〕

 \triangle ABE \Diamond \triangle ADF \Diamond \Diamond

四角形 ABCD が正方形であることから

$$AB=AD \cdots ①$$

$$\angle B = \angle D = 90^{\circ} \cdots 2$$

△AEF が正三角形であることから

$$AE = AF \cdots 3$$

①, ②, ③より斜辺と他の1辺がそれぞれ等しい直角三角形なので

$$\triangle ABE \equiv \triangle ADF$$

(2)
$$4-2\sqrt{3}$$
 cm

解説

(2)

BE=x cm とすると, DF=BE=x cm, CE=CF=2-x cm

$$\triangle$$
ABE において,

三平方の定理より,

$$AE^2 = 2^2 + x^2$$

 \triangle CEF において,

三平方の定理より,

$$EF^2 = (2-x)^2 + (2-x)^2$$

 \triangle AEF は正三角形より、AE=EF だから、AE²=EF²

よって,
$$2^2+x^2=(2-x)^2+(2-x)^2$$

整理して, $x^2 - 8x + 4 = 0$

解の公式に代入して,

$$x = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \times 1 \times 4}}{2 \times 1}$$
$$= \frac{8 \pm 4\sqrt{3}}{2} = 4 \pm 2\sqrt{3}$$

$$=\frac{8\pm4\sqrt{3}}{2}=4\pm2\sqrt{3}$$

$$0 < x < 2 \downarrow 0$$
,

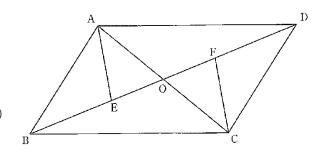
$$x = 4 - 2\sqrt{3} \text{ cm}$$

【問2】

図のように、平行四辺形 ABCD があり、対角線の交点を O とします。対角線 BD 上に OE=OF となるように異なる 2 点 E, F をとります。

このとき, $\triangle OAE \equiv \triangle OCF$ であることを証明しなさい。

(岩手県 2012年度)



解答欄

〔証明〕		

解答

[証明]

 \triangle OAE \triangle OCF \triangle CT

仮定から

 $OE = OF \cdots (1)$

平行四辺形の対角線は、それぞれの中点で交わるから

 $OA = OC \cdots (2)$

対頂角は等しいから

 $\angle AOE = \angle COF \cdots (3)$

(1), (2), (3)より

2 辺とその間の角がそれぞれ等しいから

 $\triangle OAE \equiv \triangle OCF$

解説

 \triangle OAE \triangle OCF \triangle CT \triangle CT,

四角形 ABCD は平行四辺形より、対角線はそれぞれの中点で交わるので

 $OA = OC \cdots \bigcirc$

対頂角は等しいので∠AOE=∠COF…②

仮定より OE=OF…③

①, ②, ③より

2 辺とその間の角がそれぞれ等しいので

 $\triangle OAE \equiv \triangle OCF$

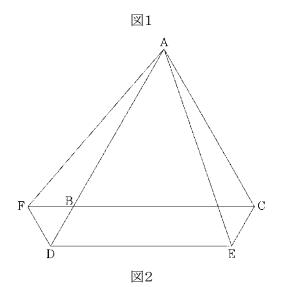
【問3】

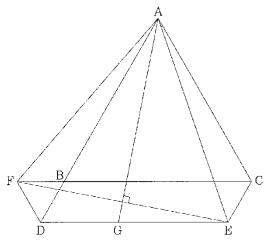
図1のように、正三角形 ABC の辺 AB を B の方へ延長した直線上に、点 D をとります。また、点 E を、四角形 CBDE が平行四 辺形となるようにとり、点 D と点 E、点 C と点 E、点 A と点 E をそれぞれ結びます。さらに、辺 BC を B の方へ延長した直線上に、BF=BD となる点 F をとり、点 A と点 F、点 D と点 F をそれぞれ結びます。

次の(1), (2)の問いに答えなさい。

(宮城県 2012年度)

- (1) $\triangle ABF \equiv \triangle ACE$ であることを証明しなさい。
- (2) AB=8 cm, BD=2 cm とします。図2は、図1において、点 Fと点 Eを結んだものです。また、点 Aを通り、線分 FE に 垂直な直線をひき、線分 DE との交点を G とします。 次の①、②の問いに答えなさい。
 - ① 線分 FE の長さを求めなさい。
 - ② 四角形 AGEC の面積を求めなさい。





	〔証明〕		
(1)			
1-1	1	cm	
(2)	2	cm^2	

```
解答
```

(1)

〔証明〕

 \triangle ABF \triangle ACE において

△ABC は正三角形であるから

 $AB = AC \cdots (1)$

仮定から, BF=BD

平行四辺形の対辺はそれぞれ等しいから、BD=CE

したがって、BF=CE…②

$$\angle ABF = 180^{\circ} - \angle ABC = 180^{\circ} - 60^{\circ} = 120^{\circ}$$

平行線の錯角は等しいから,

$$\angle ECB = \angle ABC = 60^{\circ}$$

$$=60^{\circ}+60^{\circ}=120^{\circ}$$

したがって、 $\angle ABF = \angle ACE \cdots$ ③

①, ②, ③より,

2 辺とその間の角がそれぞれ等しいから

 $\triangle ABF \equiv \triangle ACE$

(2)

①
$$2\sqrt{21}$$
 cm

①
$$2\sqrt{21} \text{ cm}$$
 ② $\frac{47\sqrt{3}}{3} \text{ cm}^2$

解説

(2)

Aから BC に垂線をひき, 交点を Iとすると, $\triangle ABC$ は 1 辺が 8 cm の正三角形より,

$$AI = \frac{\sqrt{3}}{2}AB = \frac{\sqrt{3}}{2} \times 8 = 4\sqrt{3} cm$$

$$\triangle ACE = \triangle ABF = \frac{1}{2} \times 2 \times 4\sqrt{3} = 4\sqrt{3} \text{ cm}^2$$

 $\triangle ABF \equiv \triangle ACE \ \sharp \emptyset$

 \triangle AFE において、 \angle FAE= \angle FAB+ \angle DAE= \angle EAC+ \angle DAE= \angle BAC= 60°

また、AF=AE より△AFE は正三角形である。

AGとEFの交点をKとするとAKLEFより

$$EK = \frac{1}{2} FE = \sqrt{21} \text{ cm}, AK = \sqrt{3} \times \sqrt{21} = 3\sqrt{7} \text{ cm}$$

ここで、 $\triangle EKG \hookrightarrow \triangle EHF$ だから

EK:EH=KG:HF

$$\sqrt{21} : 9 = \text{KG} : \sqrt{3}$$

$$9KG = 3\sqrt{7}$$

$$KG = \frac{\sqrt{7}}{3}cm$$

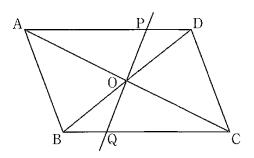
よって
$$\triangle AGE = \frac{1}{2} \times \left(3\sqrt{7} + \frac{\sqrt{7}}{3}\right) \times \sqrt{21} = \frac{35\sqrt{3}}{3}$$

よって四角形 AGEC の面積は
$$\triangle$$
ACE+ \triangle AGE= $4\sqrt{3}+\frac{35\sqrt{3}}{3}=\frac{47\sqrt{3}}{3}$ cm²

【問4】

図のように、平行四辺形 ABCD の対角線の交点 O を通る直線と辺 AD, BC との交点をそれぞれ P, Q とする。このとき、 $\triangle AOP \equiv \triangle COQ$ となることを証明しなさい。

(秋田県 2012年度)



解答欄

〔証明〕		

解答

〔証明〕

 $\triangle AOP \ \& \triangle COQ \ \circlearrowleft$,

平行四辺形の対角線はそれぞれ中点で交わるから,

 $OA = OC \cdots \bigcirc$

対頂角は等しいから,

 $\angle AOP = \angle COQ \cdots ②$

平行線の錯角は等しいから,

 $\angle OAP = \angle OCQ \cdots 3$

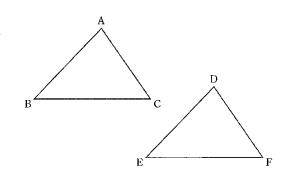
①, ②, ③より,

1辺とその両端の角がそれぞれ等しいから,

 $\triangle AOP \equiv \triangle COQ$

【問 5】

図の \triangle ABC \Diamond DEF において、AB=DE、BC=EF である。 このほかにどの辺や角が等しければ、 \triangle ABC \Diamond DEF が合同で あるといえるか。P、A、D0、A0、A1 つを選んで記号で答えなさい。また、その ∂ 1 つを選んで記号で答えなさい。また、その ∂ 2 形の合同条件を答えなさい。



(栃木県 2012年度)

ア AC=DF

 $\angle BAC = \angle EDF$

ウ ∠ABC=∠DEF

エ ∠BCA=∠EFD

解答欄

記号
合同条件

解答

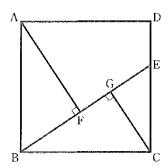
記号 ウ

合同条件 2組の辺とその間の角がそれぞれ等しい

【問6】

右の図のような正方形 ABCD がある。辺 CD 上に点 E をとり、頂点 A, C から線分 BE に引いた垂線と線分 BE との交点をそれぞれ F, G とする。このとき、 \triangle ABF $\equiv \triangle$ BCG であることを証明しなさい。

(新潟県 2012年度)



解答欄

```
[証明]
```

解答

〔証明〕

 $\triangle ABF$ と $\triangle BCG$ において

 $\angle AFB = \angle BGC = 90^{\circ} \cdots \textcircled{1}$

四角形 ABCD は正方形だから

 $AB = BC \cdots ②$

また

 $\angle ABF = 90^{\circ} - \angle CBG \cdots 3$

 $\angle BCG = 90^{\circ} - \angle CBG \cdots \textcircled{4}$

3, 4L1

 $\angle ABF = \angle BCG \cdots \textcircled{5}$

①, ②, ⑤より

直角三角形の斜辺と1つの鋭角がそれぞれ等しいから

 $\triangle ABF \equiv \triangle BCG$

解説

 $\triangle ABF$ と $\triangle BCG$ において

仮定より∠AFB=∠BGC=90°…①

四角形 ABCD は正方形より AB=BC…②

 $\angle ABF = \angle ABC - \angle CBG = 90^{\circ} - \angle CBG$

 $\angle BCG = 180^{\circ} - \angle CBG - \angle BGC = 90^{\circ} - \angle CBG$

よって∠ABF=∠BCG…②

①, ②より

直角三角形の斜辺と1つの鋭角がそれぞれ等しいので

 $\triangle ABF \equiv \triangle BCG$

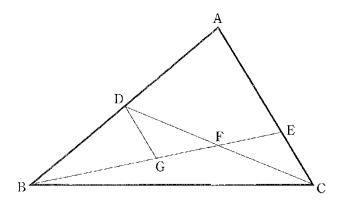
【問7】

図の \triangle ABC で,点 D は辺 AB の中点であり,点 E は辺 AC 上の点で,AE:EC=2:1 である。線分 BE と CD との交点を F,点 D を通り AC に平行な直線と BE との交点を G とする。

次の問1、問2に答えなさい。

(岐阜県 2012年度)

問1 \triangle CEF \equiv \triangle DGF であることを証明しなさい。



問2 \triangle ABC の面積は \triangle DGF の面積の何倍であるかを求めなさい。

	〔証明〕	
問1		
問2	倍	

問1

〔証明〕

 $\triangle CEF \ \angle \triangle DGF \ \vec{c}$

仮定から
$$CE = \frac{1}{2} AE \cdots ①$$

DG // AE, BD:BA=1:2 だから

DG:AE=1:2

よって DG =
$$\frac{1}{2}$$
 AE…②

①, ②から CE= DG…③

AC // DG より, 平行線の錯角だから

$$\angle CEF = \angle DGF \cdots \textcircled{4}$$

$$\angle ECF = \angle GDF \cdots \bigcirc 5$$

3, 4, 5hb

1組の辺とその両端の角がそれぞれ等しいので

 $\triangle CEF \equiv \triangle DGF$

問2 12 倍

解説

間1

△CEF と△DGF において

DG // AE より、BG:GE=BD:DA=1:1

よって \triangle ABE で中点連結定理より, DG= $\frac{1}{2}$ AE

また
$$AE:EC=2:1$$
 より, $CE=\frac{1}{2}AE$

よって DG=CE…①

DG // AC より, 錯角は等しいので

$$\angle FDG = \angle FCE \cdots ②$$

$$\angle FGD = \angle FEC \cdots (3)$$

①, ②, ③より

1 辺とその両端の角がそれぞれ等しいので

 $\triangle CEF \equiv \triangle DGF$

問2

BG:GE=1:1, GF:FE=1:1 より, BF:FE=3:1

よって△BCE=4△CEF=4△DGF

 $AE:EC=2:1 \downarrow \emptyset$,

 $\triangle ABC = 3 \triangle BCE = 3 \times 4 \triangle DGF = 12 \triangle DGF$

よって 12 倍。

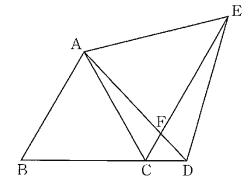
【問8】

右の図のように、正三角形 ABC と正三角形 ADE がある。点 D は辺 BC の延長上にあり、辺 AD と線分 CE の交点を F とする。

次の問1、問2に答えなさい。

(山口県 2012年度)

問1 $\triangle ABD \equiv \triangle ACE$ であることを証明しなさい。



問2 BC=3 cm, CD=1 cm のとき, 線分 AF の長さを求めなさい。

問1	〔証明〕	
問2	cm	

```
解答
```

問1

〔証明〕

 $\triangle ABD \ \& \triangle ACE \ \circlearrowleft$

 \triangle ABC, \triangle ADE は正三角形だから

$$AB = AC \cdots (1)$$

$$AD = AE \cdots ②$$

$$\angle BAC = \angle DAE = 60^{\circ} \cdots 3$$

また, ③から

$$\angle BAD = \angle BAC + \angle CAD$$

$$=60^{\circ} + \angle \text{CAD} \cdot \cdot \cdot \cdot 4$$

$$\angle CAE = \angle CAD + \angle DAE$$

$$= \angle \text{CAD} + 60^{\circ} \cdots \textcircled{5}$$

⑤から

$$\angle BAD = \angle CAE \cdots 6$$

①, ②, ⑥から

2 辺とその間の角がそれぞれ等しいので

$$\triangle ABD \equiv \triangle ACE$$

問2
$$\frac{3\sqrt{13}}{4}$$
cm

解説

問2

AからBCに垂線をひき、交点をHとする。

$$\triangle ABC$$
 は 1 辺が 3 cm の正三角形より $CH = \frac{3}{2}$ cm, $AH = \frac{3\sqrt{3}}{2}$ cm

$$\triangle$$
ADH において三平方の定理より, $AD = \sqrt{\left(1 + \frac{3}{2}\right)^2 + \left(\frac{3\sqrt{3}}{2}\right)^2} = \sqrt{13}$ cm

 $\triangle AFE \circ \triangle CAE$ だから,

AF:CA=AE:CE

AF:
$$3 = \sqrt{13} : 4$$

$$4AF = 3\sqrt{13}$$

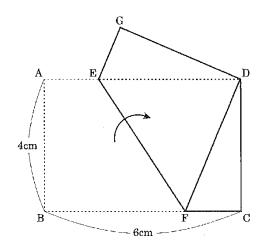
$$AF = \frac{3\sqrt{13}}{4} cm$$

【問9】

図のように、AB=4 cm、BC=6 cm の長方形 ABCD がある。点 B を点 D に重なるように折り、点 A が移る点を G、折り目を EF とする。 間1~間4に答えなさい。

(徳島県 2012年度)

問1 長方形 ABCD の対角線 BD の長さを求めなさい。



問2 折り目 EF を, 定規とコンパスの両方を使って解答用紙に作図しなさい。なお, 作図に使った線は消さずに 残しておくこと。 定規やコンパスを持っていない場合は, 作図の方法を, 文章で書きなさい。

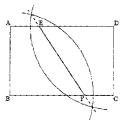
問3 \triangle FCD \equiv \triangle EGD を証明しなさい。

間4 点 G と点 F を結ぶ線分 GF と、線分 ED、対角線 BD との交点をそれぞれ H、I とするとき、 $\triangle HID$ の面積は、 $\triangle EHG$ の面積の何倍か、求めなさい。

問1		cm
問2	A B	D C
HHO	〔証明〕	
問3		
問4		倍

問1 $2\sqrt{13}$ cm

問2



(文章記述例)

点 B, D を, それぞれ中心として, 等しい半径の円をかく。

この 2 円の交点を直線で結び、辺 AD との交点を E, 辺 BC との交点を F として、線分 EF をひく。 問3

[証明]

△FCD と△EGD で

長方形の辺の長さと角の大きさの性質から

 $CD = GD \cdots \bigcirc$

$$\angle$$
 FCD = \angle EGD = $90^{\circ} \cdots (2)$

$$\angle FDC = \angle EDG \cdots \textcircled{3}$$

①, ②, ③から

1 辺とその両端の角が、それぞれ等しいので

$$\triangle FCD \equiv \triangle EGD$$

問4
$$\frac{2197}{775}$$
倍

解説

問4

GE = x cm とおくと、DE = 6 - x cm と表せる。

 \triangle GED において、三平方の定理より $(6-x)^2=x^2+4^2$

これを解いて
$$x=\frac{5}{3}$$

$$DF = DE = 6 - \frac{5}{3} = \frac{13}{3} cm$$

GE // DF より

EH:DH=GE:FD=
$$\frac{5}{3}:\frac{13}{3}=5:13$$

DH // FB より

HI:IF=DH:BF=13:(5+13)=13:18

よって
$$\triangle$$
HID= $\frac{13}{31}$ \triangle DHF…①

また△EHG∽△DHF だから

 $\triangle EHG: \triangle DHF = 5^2: 13^2 = 25: 169$

$$\triangle DHF = \frac{169}{25} \triangle EHG \cdots ②$$

①, ②より
$$\triangle$$
HID= $\frac{13}{31} \times \frac{169}{25} \triangle$ EHG= $\frac{2197}{775} \triangle$ EHG

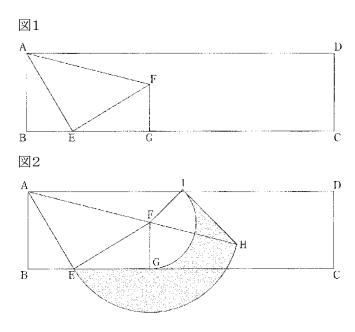
【問 10】

図1のように、AB=5 cm の長方形 ABCD がある。 点 E を辺 BC 上に、BE=3 cm となるようにとり、点 F を、 $\triangle AEF$ が $\triangle AEF=90$ ° の直角二等辺三角形となるように長方形の内側にとる。また、点 F から辺 BC にひいた垂線と辺 BC との交点を G とする。

このとき, 次の問いに答えなさい。(円周率はπを用いること。)

(愛媛県 2012年度)

問1 $\triangle ABE \equiv \triangle EGF$ であることを証明せよ。



問2 下の図2のように、△EGFを、点 Fを回転の中

心として、時計の針の回転と反対向きに回転移動して、点 E が線分 AF の延長線上に移るようにする。点 E が移った点を H, 点 G が移った点を I とするとき、

- (1) **∠GFI** の大きさを求めよ。
- (2) 線分 EG が通る部分 (下の図2の をつけた部分) の面積を求めよ。

問1	〔証明〕		
問2	(1)	度	
	(2)	${\sf cm}^2$	

```
解答
```

問1

[証明]△ABE と△EGF において

仮定から

 $\angle ABE = \angle EGF = 90^{\circ} \cdots \textcircled{1}$

△AEF は直角二等辺三角形だから

 $AE = EF \cdots ②$

△ABE で∠ABE=90° だから

$$\angle BAE + \angle BEA = 90^{\circ} \cdots 3$$

∠AEF=90°だから

$$\angle BEA + \angle GEF = 90^{\circ} \cdots \textcircled{4}$$

③, ④から

$$\angle BAE = \angle GEF \cdots (5)$$

①, ②, ⑤で

2 つの三角形は直角三角形で、斜辺と1 つの鋭角がそれぞれ等しいことがいえたから

$$\triangle ABE \equiv \triangle EGF$$

問2

(1) 135 度

(2)
$$\frac{75}{8} \pi \text{ cm}^2$$

解説

問2

(1)

$$\angle GFI = \angle EFH = 180^{\circ} - \angle AFE = 180^{\circ} - 45^{\circ} = 135^{\circ}$$

(2)

求める面積は、おうぎ形 $FEH+\triangle HIF-\triangle EFG-$ おうぎ形 FGI

ここで、 \triangle HIF \equiv \triangle EFG だから、

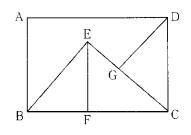
求める面積は、おうぎ形 FEH-おうぎ形 FGI

三平方の定理より、 $EF=AE=\sqrt{3^2+5^2}=\sqrt{34}$ cm

よって、求める面積は
$$\pi \times (\sqrt{34})^2 \times \frac{135}{360} - \pi \times 3^2 \times \frac{135}{360} = \frac{75}{8} \pi \text{ cm}^2$$

【問 11】

図のように、 $AB = \frac{2}{3}$ BC である長方形 ABCD がある。この長方形 ABCD の内部に EB = DC、 $\angle BEC = 90^\circ$ となるように点 E をとり、辺 BC を斜辺とする直角三角形 BCE をつくる。また、点 E から辺 BC に垂線をひき、辺 BC との交点を F、点 D から辺 EC に垂線をひき、辺 EC との交点を G とする。このとき、次の問 1・間2に答えなさい。



(高知県 2012 年度 前期)

問1 \triangle EBF \equiv \triangle DCG を証明せよ。

問2 AB=6 cm のとき, 線分 EG の長さを求めよ。

	〔証明〕
	$\triangle \mathrm{EBF}$ と $\triangle \mathrm{DCG}$ において
問1	
	したがって、△EBF≡△DCG
問2	cm

問1

〔証明〕

 \triangle EBF と \triangle DCG において

仮定から

 $\angle EFB = \angle DGC = 90^{\circ} \cdots (1)$

EB=DC ···②

また

∠BEC=∠BCD=90°であるから

 $\angle EBF = 90^{\circ} - \angle ECB$

$$\angle DCG = 90^{\circ} - \angle ECB$$

よって

①, ②, ③より

直角三角形で斜辺と1つの鋭角がそれぞれ等しい。

したがって \triangle EBF $\equiv \triangle$ DCG

問2
$$(3\sqrt{5}-4)$$
 cm

解説

問2

$$AB=6$$
 cm のとき、 $BC=\frac{3}{2}AB=\frac{3}{2}\times 6=9$ cm

△EBC において、三平方の定理より

$$EC = \sqrt{9^2 - 6^2} = 3\sqrt{5} \text{ cm}$$

△EBC の面積の関係より

$$\frac{1}{2} \times \text{BC} \times \text{EF} = \frac{1}{2} \times \text{BE} \times \text{EC}$$

$$\frac{1}{2} \times 9 \times EF = \frac{1}{2} \times 6 \times 3\sqrt{5}$$

 $EF = 2\sqrt{5}$ cm

△EBF で三平方の定理より

$$BF = \sqrt{6^2 - (2\sqrt{5})^2} = 4cm$$

△EBF≡△DCG より

CG=BF=4cm

よって EG= $3\sqrt{5}$ -4 cm

【問 12】

図1~図3のように、円 O の周上に 3 点 A, B, C がある。線分 BC は Π O の直径で、 Π AB=4 cm、 Π AC=3 cm である。 Π BAC の二等分線と線分 BC、 Π O との交点をそれぞれ D, E とする。このとき、次の問いに答えなさい。

(長崎県 2012年度)

問1 ∠BAC の大きさは何度か。

問2 \triangle ABC の面積は何 cm²か。

問3 図2のように, 点 D から 2 つの線分 AB, AC に垂線をひき, AB, AC との交点をそれぞれ P, Q とする。このとき, 次の(1), (2)に答えよ。

- (1) $\triangle APD \equiv \triangle AQD$ であることを証明せよ。
- (2) 線分 DQ の長さは何 cm か。

図1

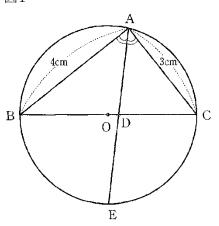


図2

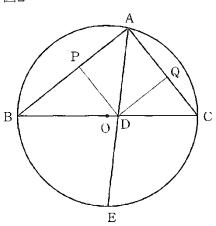
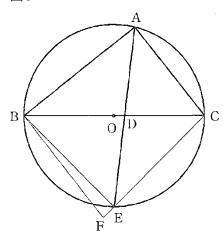


図3



問4 図3のように、線分 CE を E のほうへ延長し、その上に AC // BF となる点 F をとる。このとき、 $\triangle BEF$ の面積 は何 cm^2 か。

問1		∠BAC= °	
問2		cm^2	
問3	(1)		
	(2)	cm	
問4		cm^2	

問1 ∠BAC=90°

問2 6 cm²

問3

(1)

△APD と△AQD において

AD は共通…③

①, ②, ③より

直角三角形の斜辺と1つの鋭角がそれぞれ等しいので

$$\triangle APD \equiv \triangle AQD$$

(2)
$$\frac{12}{7}$$
 cm

問4
$$\frac{25}{28}$$
 cm²

解説

問4

△ABC において

三平方の定理より BC =
$$\sqrt{3^2+4^2}$$
 = 5cm

$$\triangle$$
EBC は直角二等辺三角形になるから BE=EC= $\frac{5}{\sqrt{2}}=\frac{5\sqrt{2}}{2}$ cm

ここで、 $\triangle ACD$ $\bigcirc \triangle CBF$ だから

$$\triangle ACD: \triangle CBF = 3^2: 5^2$$

$$\frac{1}{2} \times 3 \times \frac{12}{7} : \triangle CBF = 9:25$$

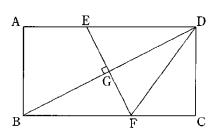
$$\triangle CBF = \frac{50}{7} cm^2$$

$$\triangle \text{BEF} = \frac{50}{7} - \frac{1}{2} \times \frac{5\sqrt{2}}{2} \times \frac{5\sqrt{2}}{2}$$

$$=\frac{25}{28} \, \text{cm}^2$$

【問 13】

右の図のような長方形 ABCD がある。対角線 BD の垂直二等分線と,辺 AD, BC との交点をそれぞれ E, F, 対角線 BD との交点を G とする。 次の問1,問2に答えなさい。



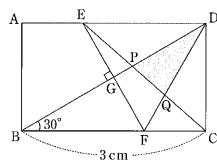
(大分県 2012年度)

問1 DE=DF であることを次のように証明した。 \square には $\triangle BFG$ と $\triangle DFG$ が合同であることの証明を, \square には適切な語句を書き,証明を完成させなさい。

〔証明〕 △BFG と△DFG において,	
P	
よって、 ∠BFG=∠DFG ······(i)	
また、AD // BC より イ は等しいから、	
∠BFG=∠DEG ······(ii) (i), (ii) より, ∠DFG=∠DEG	
2 つの底角が等しいから, \triangle DEF は二等辺三角形である。	
したがって, DE=DF	

問2 線分 CE と対角線 DB, 線分 DF との交点をそれぞれ P, Q とする。また、BC=3 cm, \angle CBD=30° とする。 次の(1), (2)の問いに答えなさい。

(1) 線分 DF の長さを求めなさい。



(2) △DPQ の面積を求めなさい。

問1	ア		
	1		
問2	(1)	cm	
	(2)	cm^2	

```
解答
```

問1

T

線分 EF は対角線 BD の垂直二等分線だから

$$BG = DG \cdots (1) \angle BGF = \angle DGF = 90^{\circ} \cdots (2)$$

また, FG は共通…③

①, ②, ③より

2 辺とその間の角がそれぞれ等しいから

$$\triangle BFG \equiv \triangle DFG$$

イ 錯角

問2

(1) 2cm (2)
$$\frac{4\sqrt{3}}{15}$$
 cm²

解説

問2

(1)

DC:BC=1:
$$\sqrt{3}$$

DC:3=1:
$$\sqrt{3}$$

$$DC = \frac{3}{\sqrt{3}} = \sqrt{3} \text{ cm}$$

$$\triangle DFC$$
 において、 $\angle DFC = \angle ADF = 30^{\circ} + 30^{\circ} = 60^{\circ}$ 、 $\angle DCF = 90^{\circ}$ より

$$CF:DC=1:\sqrt{3}$$

$$CF: \sqrt{3} = 1: \sqrt{3}$$

$$CF = 1cm$$

$$CF:DF=1:2$$

$$1:DF=1:2$$

$$DF = 2cm$$

(2)

$$EQ:QC=ED:FC=2:1$$

よって QC =
$$\frac{1}{3}$$
 EC

よって
$$EP = \frac{2}{5} EC$$

よって
$$\triangle DPQ = \triangle DEC - \triangle EPD - \triangle DQC$$

$$= \triangle \text{DEC} - \frac{2}{5} \triangle \text{DEC} - \frac{1}{3} \triangle \text{DEC}$$

$$=\frac{4}{15}\triangle DEC$$

$$=\frac{4}{15}\times\frac{1}{2}\times2\times\sqrt{3}$$

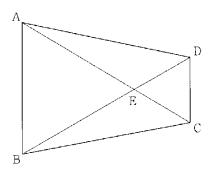
$$=\frac{4\sqrt{3}}{15}$$
 cm²

【問 14】

図のような四角形 ABCD がある。線分 AC と BD の交点を E とすると, \triangle ABE と \triangle CDE は 1 辺の長さがそれぞれ 4 cm と 2 cm の正三角形である。このとき,次の各問いに答えなさい。

(沖縄県 2012年度)

問1 △AED≡△BEC であることを証明しなさい。ただし、証明の中に根拠となることがらを必ず書くこと。



問2 AD の長さを求めなさい。

問1		
問2	cm	

問1

 \triangle AED と \triangle BEC において

正三角形 ABE の 2 辺なので

 $AE = BE \cdots \bigcirc$

正三角形 CDE の 2 辺なので

 $ED = EC \cdots ②$

対頂角は等しいから

 $\angle AED = \angle BEC \cdots \textcircled{3}$

(1)2(3)Ly

2 辺とその間の角がそれぞれ等しいから

 $\triangle AED \equiv \triangle BEC$

間2 $2\sqrt{7}$ cm

解説

問2

D から AB に垂線をひき, 交点を H とする。

△DBH は∠DBH=60°, ∠DHB=90°の直角三角形だから

$$BH = \frac{1}{2} BD = \frac{1}{2} \times (4+2) = 3cm$$

$$DH = \sqrt{3} BH = \sqrt{3} \times 3 = 3\sqrt{3} cm$$

$$AH=4-3=1cm$$

△ADH において、三平方の定理より

$$AD = \sqrt{1^2 + (3\sqrt{3})^2} = \sqrt{28} = 2\sqrt{7} \text{ cm}$$